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Abstract

WebAssembly (Wasm) is a new binary instruction format that allows targeted compiled code written in

high-level languages to be executed by the browser’s JavaScript engine with near-native speed. De-

spite its clear performance advantages, Wasm opens up the opportunity to introduce vulnerabilities into

Web programs, as pre-existing vulnerabilities in programs written in unsafe languages can be trans-

ferred down to cross-compiled binaries. The source code of such binaries is frequently unavailable for

static analysis, creating the demand for tools that can directly tackle Wasm code. Despite this security

critical situation, there is still a lack of tool support for analysing Wasm binaries. We present WASP,

a symbolic execution engine for testing Wasm modules, which works directly on Wasm code and was

built on top of a standard-compliant Wasm reference implementation. WASP was thoroughly evaluated.

It was used to symbolically test a generic data-structure library for C and the Amazon Encryption SDK

for C, demonstrating that it can find bugs and generate high-coverage testing inputs for real-world C

applications. WASP was further tested against the Test-Comp benchmark, obtaining results comparable

to well-established symbolic execution/testing tools for C, such as KLEE and VeriFuzz.
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Resumo

WebAssembly (Wasm) é um novo formato binário que permite que código escrito em linguagens de

alto nı́vel seja executado na Web, com velocidade quase nativa, pelo motor de JavaScript no browser.

Apesar das suas óbvias vantagens, o Wasm abre oportunidades de introdução de vulnerabilidades em

programas da Web, dado que as vulnerabilidades pré-existentes em programas escritos em linguagens

inseguras podem ser transferidas para os binários de Wasm. Frequentemente, o código-fonte destes

binários não se encontra disponı́vel para análise estática, originando a necessidade de ferramentas que

consigam trabalhar com código Wasm diretamente. Apesar desta necessidade crı́tica de segurança

para binários Wasm, não existe uma ferramenta convencional para análise de Wasm. Nesta tese ap-

resentamos o WASP, um motor de execução simbólica para testar módulos Wasm. O WASP funciona

diretamente sobre código Wasm, sendo desenvolvido em cima de um interpretador de referência. O

WASP foi avaliado cuidadosamente. Foi usado para testar simbolicamente uma biblioteca genérica de

estruturas de dados em C e da Amazon Encryption SDK, também para C. Foi demonstrado que a fer-

ramenta deteta erros e gera testes de alta cobertura para aplicações em C, no mundo real. O WASP foi

ainda testado com a bateria de testes da Test-Comp, obtendo resultados comparáveis com ferramentas

de execução simbólica para C, tais como o KLEE e o VeriFuzz.

Palavras Chave

Execução Concólica, WebAssembly, Geração de Testes, Verificação de Programas C
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WebAssembly (Wasm) is a binary instruction format designed to be the new standard compilation

target for the Web. Wasm is now either partially or fully supported by all major browser vendors, enabling

Web applications to run with near-native speed. As a result, Web applications are increasingly being

ported into Wasm to reap its performance benefits. In particular, Wasm has been adopted for uses in

server-side runtimes1, IoT platforms [4], and in edge computing2.

However, the compilation of unsafe languages to Wasm opens up the opportunity for the introduc-

tion of new classes of vulnerabilities into the setting of Web programs, as vulnerabilities in the original

programs can be transposed to Wasm binaries and resurface in the Web under a new guise [5]. This

is the case of buffer overflows [6], format string bugs [7], or use-after-free errors3. By exploiting such

flaws4, cyber attackers have access to a widened surface for launching serious attacks on the Web.

These include cross-site scripting attacks by exploiting client-side code [6], or code injection attacks

by targeting vulnerabilities in server-side code (e.g., powered by Node.js). WebAssembly itself can be

used for writing malware, e.g., web keyloggers5, or crypto-miners [8]. Importantly, Wasm binaries are

often integrated directly into Web applications, with developers not having access to the correspond-

ing source code. Hence, developers must analyse standalone Wasm code to test it against potential

security vulnerabilities and other types of execution errors.

Symbolic execution is a program analysis technique that allows for the exploration of multiple pro-

gram paths by running the given program using symbolic values instead of concrete ones. It has suc-

cessfully been applied to finding a wide range of security vulnerabilities and other types of bugs in

many high-level/intermediate languages. For instance, KLEE [9] found several fatal bugs in high-profile

software systems, such as in GNU COREUTILS6 and BUSYBOX7; DART [10] successfully generated

inputs to crash 65% of the external functions in oSIP8, an open-source session initiation protocol; and

Java PathFinder [11], developed by NASA, was used to test the Orion Spacecraft’s control software.

Nonetheless, to the best of our knowledge, there are only two tools for symbolically executing Wasm

code: WANA [12] and Manticore [13]. These tools are specifically aimed at smart contracts written in

Wasm and are also in preliminary development stages. Importantly, the analysis of smart contracts is

fundamentally different from that of general-purpose software applications, which are often much larger

and, therefore, impose different scale requirements.

We present the WebAssembly Symbolic Processor, WASP, a novel symbolic execution engine for

testing Wasm modules, which was built on top of the standard-compliant Wasm reference implemen-

tation introduced in [1]. The symbolic execution engine at the core of WASP was obtained by lifting
1https://nodejs.org/en/blog/release/v12.3.0/
2https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
3https://www.exploit-db.com/exploits/46968
4https://www.fastly.com/blog/hijacking-control-flow-webassembly
5https://www.virusbulletin.com/virusbulletin/2018/10/dark-side-webassembly/
6https://www.gnu.org/software/coreutils/
7https://busybox.net/
8http://www.gnu.org/software/osip/osip.html
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the reference interpreter9 from concrete values to symbolic values. In order to achieve this, we for-

malised the symbolic semantics of Wasm and designed our symbolic interpreter closely following the

proposed semantic rules. Both our symbolic semantics and symbolic engine follow the so-called concolic

discipline [10, 14], combining concrete execution with symbolic execution and exploring one execution

path at a time. A significant advantage of this approach compared to the fully static one is that the latter

requires less frequent interactions with the underlying first-order solver; essentially, one call to the solver

per explored execution path.

Using WASP, we created WASP-C, a new symbolic execution framework for testing C programs.

WASP-C takes as input a C program optionally annotated with assumptions and assertions and gener-

ates a test suite for that program. A test suite is a set of test cases, each corresponding to a different

execution path of the program to be analysed. If, during symbolic execution, WASP-C finds an assertion

violation or a runtime error, the error is reported to the developer together with the concrete inputs that

triggered it.

While in this work, we use WASP to build a symbolic execution engine for C, WASP can also be used

to obtain symbolic engines for other programming languages provided that they compile to Wasm. In a

nutshell, if one wants to use WASP to enable a symbolic execution engine for a given language, one has

two key tasks to accomplish. First, the symbolic primitives of WASP, such as the declaration of assertions

and assumptions and the creation of symbolic variables, must be exposed at the source-language level

and be properly connected to the corresponding WASP primitives via compilation. Second, one must

guarantee that the code of the required runtime libraries is available for symbolic execution or that WASP

includes symbolic summaries that model the behaviour of those libraries.

WASP-C was thoroughly evaluated:

• It was used to test Collections-C10 symbolically, a widely-used generic data structure library for C

previously tested using the Gillian-C tool [15]. WASP-C found three bugs in Collections-C, including

a previously unknown bug that Gillian-C did not detect. Furthermore, WASP-C is more efficient

than Gillian-C, completing the symbolic analysis of the library 1.14× faster.

• It was used to symbolically test the Amazon Encryption SDK11 for C, generating a high-coverage

test suite for that library and demonstrating that WASP-C does indeed scale to industry-grade code.

• It was thoroughly tested against the Test-Comp [16] benchmark, obtaining results comparable to

well-established symbolic execution and testing tools for C, such as KLEE [9] and VeriFuzz [17]. If

we compare the results we obtained for WASP-C against those obtained for the tools submitted for

the 2021 Competition on Software Testing (TestComp 2021 [2]), we conclude that WASP-C is the

9https://github.com/WebAssembly/spec/tree/master/interpreter
10https://github.com/srdja/Collections-C
11https://github.com/aws/aws-encryption-sdk-c
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third-best tool in the cover-error category and the sixth-best tool in the cover-branches category

out of a total of twelve tools (including WASP).

In summary, the contributions of this work are three-fold: A robust concolic execution engine named

WebAssembly symbolic processor (WASP) v1.0 built on the pre-existing WASP v0.1. Then WASP-C,

a symbolic execution framework for testing C programs. Lastly, Three sets of symbolic benchmarks in

Wasm with varying degrees of complexity, testing different types of symbolic reasoning.

We structure this thesis as follows: Chapter 2, provides an overview of Wasm focusing on its instruc-

tion format and semantics, and we briefly explain symbolic execution. Chapter 3 unfolds all the related

research relevant to the work we performed in this thesis. In Chapter 4, we start by giving an overview

of the original version of WASP (4.1), then we describe the improvements over the symbolic memory

(4.2), followed by necessary changes to the first order solver to support this new memory model (4.3). In

this chapter, we also introduce a new mechanism that allows WASP to recover from failed assumptions

(4.4). In Chapter 5, we present WASP-C; we describe how we implemented the runtime models(5.2)

together with a technique for efficient test suite generation (5.3). In Chapter 6, we evaluate WASP-C.

Finally, Chapter 7 reflects on our work and points out future research directions.
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(value types) t ::= i32 | i64 | f32 | f64
(packed types) tp ::= i8 | i16 | i32
(function types) tf ::= t∗ → t∗

(instructions) e ::= unreachable | nop | drop | select | t.const c |
get local i | set local i | tee local i | get global i |
set global i | t.load (tp sx)? a o | t.store tp? a o |
current memory | grow memory |
block tf e∗ end | loop tf e∗ end | if tf e∗ else e∗ end |
br i | br if i | br table i+ | return | call i | call indirect tf |
t.unopt | t.binopt | t.testopt | t.relopt | t.cvtop t sx?

(functions) f ::= ex∗ func tf local t∗ e∗ | ex∗ func tf im
(imports) im ::= import “name” “name”
(exports) ex ::= export “name”

Figure 2.1: Simplified Wasm abstract syntax, as presented in [1].

This chapter provides the necessary background for the rest of this thesis. In Section 2.1 we will start

by giving an overview of Wasm as a language, where we present an example of its execution semantics

(2.1.2). In this section, we also briefly explore compiler and toolchain technologies that compile C/C++

programs to Wasm modules (2.1.3). In Section 2.2 we introduce symbolic execution. Finally, we will

wrap up the chapter with a summary.

2.1 WebAssembly

2.1.1 Syntax

WebAssembly (abbreviated Wasm), introduced in [1], is low-level bytecode that offers compact rep-

resentation, efficient validation and compilation, and ensures safe execution with minimal overhead.

Since Wasm is an abstraction over common hardware, it makes it language-, hardware- and platform-

independent. Like other assembly languages, it is mainly used as a compilation target for languages,

such as C/C++ or Rust, allowing for code written in a range of languages to be run on web browsers with

significant speed improvements compared to JavaScript. Even though Wasm is a binary code format, it

has a language with syntax and structure, bringing the opportunity for developers to write this format by

hand if desired.

A WebAssembly binary takes the form of a module. A Wasm module can be seen as a collection of

Wasm functions, together with the declaration of their shared global variables and the specification of

the linear memory in which the module is to be executed. Computation is based on a stack machine;

Wasm instructions interact with the stack by pushing values onto the stack or popping values out of

the stack. A Wasm module is executed by an embedder, e.g. the host JavaScript engine, that handles

traps, i.e. unrecoverable Wasm errors, defines how modules are loaded, resolves imports and exports

9



between modules, and handles I/O and timers. The syntax of Wasm programs is given in Figure 2.1 and

includes: functions f , instructions e, values c, value types t, packed types tp, and function types tf .

Wasm Types and Values Wasm has only four primitive types, all of which are readily available on

common hardware. Those are integers and IEEE 754 floating-point numbers, each with a 32 and 64-bit

variant. Wasm has no distinction between signed and unsigned integers; instead, instructions have a

sign extension to indicate how to interpret the generated integer values.

Wasm Instructions Wasm instructions can be broadly divided into the following categories: (1) stack

instructions, for explicit manipulation of the stack, (2) variable instructions, for updating and retrieving

the values of both local and global variables, (3) memory instructions, for loading and storing values

to and from the module’s memory, (4) control flow instructions, for determining the control flow of the

program, and (5) multiple unary and binary operators over Wasm primitive types. The stack instructions

are straightforward: the instruction drop pops the value at the top of the stack, and the instruction const

pushes its argument onto the stack. The unary and binary operators include the standard relational,

arithmetic, and boolean operators over the Wasm integers or floats. In the following, we discuss the

variable, memory and control flow instructions, introducing at the same time the key structures that they

interact with.

Variable Instructions Wasm variables can be either local, belonging to the execution context of a

function, or global, belonging to the entire module. Wasm does not have “named” variables; instead,

both local and global variables are indexed by integer values. Wasm provides instructions to set the value

of a given variable to the value at top of the stack (set local and set global for local and global variables

respectively) and to get the value of a given variable, pushing it onto the top of the stack (get local and

get global for local and global variables respectively). For instance, the instruction get local i is used

to push the value of the ith local variable onto the top of the stack and the instruction set local i is used

to store the value on top of the stack on the ith local variable. Observe that both instructions set global

and set local have the side effect of popping the value at the top of the stack. As it is often convenient

to assign a given value to a local variable without popping that value out of the stack, Wasm includes

the instruction tee local for doing precisely that. This instruction is equivalent to a set local followed by

a get local (e.g. tee local i ≡ set local i; get local i).

Memory Instructions: The primary storage of a Wasm module is a large array of bytes, commonly

referred to as linear memory. A module can only have one memory, but memories can be exported/im-

ported, meaning modules can share the same memory. The initial memory size is fixed. However,
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memories can be dynamically grown using the instruction grow memory. The size of a memory is in-

creased one page at a time – page size is fixed at 64 KiB. Memory is accessed through the load and

store instructions, using packed types (integers with 8, 16 or 32 bits) to define the size of the memory

block to be read. For instance, the instruction i32.load8 u specifies that an 8-bit integer will be loaded

from memory and pushed onto the top of the stack.

Control Flow Instructions In contrast to most stack machines, Wasm presents structured control flow

constructs with loop, if and block instructions, ensuring that humans easily interpret the code and that

no irreducible loops [18] are encountered, as well as branches to blocks with unaligned stack heights

and branches into the middle of a multi-byte instruction.

2.1.2 Semantics

The semantics of Wasm is divided into three phases. The core specification [19] specifies each of them:

1. Decoding: Wasm is transmitted in a binary encoding of the abstract syntax presented in Fig-

ure 2.1. Decoding is converting the binary into an internal representation, which can then be used

by the embedder or, in case of an actual implementation by the machine.

2. Validation: Decoded modules are validated through the use of validation rules defined as a type

system. A type system is composed of a set of rules that are meant to verify that, at all times,

the stack contains values of the correct type. The authors [19] refer that the Wasm type system is

sound, which implies that well-typed Wasm programs cannot generate a stack whose values are

not consistent with their declared types.

3. Execution: After decoding and validation, a valid module can be executed. Execution is done as

a two-step process:

(a) Instantiation: A module is a static representation of a program; therefore, it must be instanti-

ated. An instance of a module is the computation artefact that supports its runtime execution,

complete with its state and execution stack. Instantiation requires definitions for all imports,

and it also initialises global variables and memories. The result is an instance for all the

module’s exports.

(b) Invocation: Wasm computation can be initiated by invoking an exported function of an in-

stance. Exported functions work as the entry points to a Wasm module, akin to the main

function of a C program.

11



Execution Semantics The authors of the Wasm specification [1] also propose a small-step operational

semantics for the language. Small-step operational semantics [20] is a mathematical device for rigor-

ously defining the semantics of programming languages. Small-step semantics describe the behaviour

of a program one step at a time and are formally defined using a set of rules that are applied to program

configurations. Using these rules, a program is interpreted by iteratively applying the appropriate rule to

the current configuration until no rule can be further applied.

In the following, we will briefly recap the operational semantics of Wasm following the original seman-

tics and corresponding interpreter1. To this end, we must first introduce Wasm semantic domains, which

we summarise in the table below. A Wasm configuration is composed of five elements: (1) the instruction

to be executed, e, (2) the local store, csto, mapping the local variable indexes to their respective values,

(3) the stack st, consisting of a list of concrete values following the last-in-first-out (LIFO) discipline; (4)

the global store δ mapping the global variable indexes to their associated concrete values, and (5) the

memory µ, consisting of a sequence of bits, which can be accessed through memory addresses.

Wasm Concrete Semantic Domains

CONFIGURATION C : ⟨e, ρ, st, δ, µ⟩
LOCAL STORE ρ : i32 → c

STACK st : c list

MEMORY µ : i32 → {0, 1}∗

GLOBAL STORE δ : i32 → c

OUTCOME oi ∈ OI ::= e | · | Trap
CONCRETE VALUES c ::= i32 | i64 | f32 | f64

Semantic judgements are of the form e, ρ, st, δ, µ⇒c ρ
′, st′, δ′, µ′, o meaning that the evaluation of the

instruction e, along with the current local store ρ, the stack st, the global store δ, and the memory µ,

results in a new local store ρ′, stack st′, global store δ′, memory µ′, and outcome o. The outcome o is

used to indicate if the current evaluation leads to the evaluation of another instruction e, or if no other

instruction is subsequently evaluated ·. Outcomes can also take the form of a Trap, causing the current

computation to abort. Traps are not handled by Wasm but by its embedder, which handles the errors

generated by Wasm traps.

A selection of the rules that comprise the relation ⇒c are given in Figure 2.2 and explained below.

Note that in semantic transitions, we omit the elements of the configuration that are neither updated nor

inspected by the current rule, writing, for instance, e, ρ, st⇒c ρ
′, st′, o to mean e, ρ, st, δ, µ⇒c ρ

′, st′, δ, µ, o.

IF The IF rules check the value c at the top of the stack. If c ̸= 0, the semantics generates the outcome

block (e1), meaning that the “then” block is to be executed. Otherwise, it generates the outcome block

(e2), signifying that the “else” block is to be executed. The block rule evaluates each instruction step-

by-step, while keeping track of the evaluation context.

1https://github.com/WebAssembly/spec/tree/master/interpreter
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IF-TRUE
c ̸= 0

if (e1)(e2), (c :: st)⇒c st,block(e1)

IF-FALSE
c = 0

if (e1)(e2), (c :: st)⇒c st,block(e2)

STORE
µ′ = µ[(k + o)→ bitst(c)]

t.store o, (k :: c :: st), µ⇒c st, µ
′, ·

LOAD
v := fromBitst(µ(k + o))

t.load o, (k :: st), µ⇒c (v :: st), µ, ·

GETLOCAL

get local i, ρ, st⇒c ρ, (ρ(i) :: st), ·

SETLOCAL
ρ′ = ρ[i→ v]

set local i, ρ, (v :: st)⇒c ρ
′, st, ·

e, ρ, st, δ, µ⇒c ρ
′, st′, δ′, µ′, o

Figure 2.2: Wasm concrete semantics.

STORE This rule takes the store instruction with a parameter o, denoting the memory offset where the

store is going to take place, the local store ρ, a stack with the values k and c on top k :: c :: st, and

the current memory µ. The values on top of the stack correspond to the memory address k, and the

concrete value c to be stored in this address. Given this, the memory is updated to map the real address

(k + o) to the value c, with µ′ = µ[(k + o) → bitst(c)]. The other components of the given configuration

are left unchanged.

LOAD This rule takes the load instruction with an offset o, the local store ρ, a stack with an address k on

top k :: st, and a current memory µ, and puts the value v := fromBitst(µ(k+o)) at the real address on top

of the stack v :: st. Note that the load and store instructions originally involve an alignment parameter

as per Figure 2.1. However, since the extra alignment parameter does not affect the behaviour of these

instructions, being only used by the Wasm type system, we omit it from the presented semantics.

GETLOCAL This rule obtains the value associated with local variable index by i from the store ρ, and

puts it on top of the stack, generating the new stack (ρ(i) :: st).

SETLOCAL This rule updates the entry i of the local variable store ρ, associating the value v on top of

the stack with local variable indexed by i, resulting in the new local store ρ′ = ρ[i → v] and no resulting

instruction.

Implementation The authors of [1] developed a reference interpreter for Wasm in OCaml, closely

following the proposed operational semantics. This interpreter can: (1) parse and validate modules in

binary or text format, (2) execute scripts with module definitions, invocations, and assertions, (3) convert

between Wasm’s binary and text format, (4) export text scripts to self-contained JavaScript test cases

and (5) run as an interactive interpreter.
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1 int main() {

2 int x = 1, y = 0;

3 int a = 4, b = 2;

4 if (x > 0) {

5 b = 6;

6 if (x < y)

7 a = (x * 2) + y;

8 }

9 return a != b;

10 }

Listing 2.1: Simple concrete program in C.

Running Example To illustrate the execution semantics of Wasm, we will now show how it can be

used to model the execution of the Wasm program given in Listing 2.2. This program results from the

compilation of the C program given in Listing 2.1. Importantly, we represent the Wasm program in Wasm

Textual Format (WAT), which allows program variables to be named. However, the Wasm interpreter

replaces named variables with their corresponding indexes at load time, effectively converting the given

Wasm program to the syntax introduced in the previous section. Figure 2.3 shows the concrete execution

flow of the given Wasm program, with each node in the flow diagram representing a Wasm instruction.

At the left of each node, we represent the state of the stack after the execution of the corresponding

instruction. Stacks grow downward, meaning that the top of the stack corresponds to its bottommost cell.

1 (func $main

2 ;; initialize x=1, y=0, a=4, b=2...

3 (i32.const 0)

4 (i32.gt_s)

5 (if

6 (then

7 (i32.const 6)

8 (local.set $b)

9 (local.get $x)

10 (local.get $y)

11 (i32.lt_s)

12 (if

13 (then

14 (local.get $x)

15 (i32.const 2)

16 (i32.mul)

17 (local.get $y)

18 (i32.add)

19 (local.set $a)))))

20 (local.get $a)

21 (local.get $b)

22 (i32.ne))

Listing 2.2: Wasm module for the program in List-
ing 2.1.

 

Stack

 

 

 

 

 

 

 

 

 

Return

Start

Figure 2.3: Concrete execution flow of the program
in Listing 2.1.
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The Wasm interpreter executes the given program as follows:

• In line 2, it pushes the value of variable x onto the stack. Next, it pushes the constant 0 onto the

stack and performs a greater than relational operation between the two topmost elements of the

stack (i.e., x > 0), which are replaced by the integer 1, used to represent the Boolean value true.

• In line 5, the evaluation of the if instruction outputs its “then” branch as the next instruction to be

evaluated, given that it finds the integer 1 on top of the stack.

• In lines 7–8, the interpreter sets the value of the local variable b to 6.

• In lines 9–11, the interpreter performs the relational operation x < y, which given the values in the

local store evaluates to the integer 0, used to represent the Boolean value false.

• In line 12, the evaluation of the if instruction generates the empty outcome, given that it finds the

value 0 on top of the stack and the given if the instruction has no “else” branch.

• Finally, in lines 20–22, the interpreter performs the relational operation a != b, and places its

return value on top of the stack.

2.1.3 Compilation

Assembly languages are low-level programming languages with a strong connection between the in-

structions in the language and the machine code instructions for some architecture. However, Wasm is

an abstraction over modern hardware, making it language-, hardware-, and platform-independent. Con-

sequently, Wasm instructions are called virtual instructions, and Wasm is considered a Virtual Instruction Set

Architecture (V-ISA).

Clang

Gollvm

rustc

LLVM
Optimizer

Back-end 
Compiler

x86

wasm

ARM

Front-end

LLVM
IR

Figure 2.4: LLVM Compiler Toolchain Pipeline.

Compiler Toolchain Like other assembly languages, Wasm is a compilation target for high-level pro-

gramming languages, such as C/C++ or Rust. Currently, the available set of tools that allows us to
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Memory

__heap_base__data_end0

DATA STACK HEAP

Figure 2.5: LLVM’s memory layout for Wasm modules.

compile a program, for example, in the C language to Wasm, are provided by the LLVM Project2. The

LLVM project is a collection of modular and reusable compiler and toolchain technologies. It is modular

because it has a front-end compiler that compiles code into an intermediate representation (IR), also

called LLVM. Then a back-end compiler translates the IR into its target, as exemplified in Figure 2.4.

Wasm is just one of the many targets the LLVM Project supports. For instance, for the C language, there

exists a front-end compiler called Clang3 that can emit byte code in LLVM IR. With byte code in the LLVM

IR, LLVM can perform various optimisations and eventually, with the appropriate back-end compiler, it

can translate the optimised byte code into a binary Wasm module.

Emscripten [21] is a compiler toolchain for C/C++ initially targeting JavaScript, but which now also

supports Wasm. It uses Clang and LLVM to compile to Wasm, through the same process as that given in

Figure 2.4. Code generated from Emscripten is meant to run in a JavaScript engine, typically on a web

browser. This has implications for the kind of runtime environment that can be generated. For example,

on the web, there is no direct access to the local file system. For this reason, Emscripten comes with a

partial implementation of a C library, mostly written from scratch in JavaScript with parts compiled from

an existent C library [21].

Emscripten has been applied successfully on several real-world code bases. It was used to compile

the Python C4 and Lua C5 implementations, allowing Python and Lua code to run on the web.

Compiling C to Wasm Let us now take a closer look at how C programs are compiled to Wasm.

LLVM’s Wasm object linker dictates the way the C memory is represented in Wasm, wasm-ld6. Figure 2.5

illustrates how the C heap and stack are represented in the Wasm linear memory. We can see that

the stack grows downwards into lower linear memory addresses, while the heap grows upwards into

higher linear memory addresses. More concretely, __heap_base is a pointer to the start of the heap

segment of the linear memory, and __data_end is a pointer to the start of the stack segment of the linear

2http://llvm.org/
3http://clang.llvm.org
4https://github.com/iodide-project/pyodide
5https://daurnimator.github.io/lua.vm.js/lua.vm.js.html
6https://lld.llvm.org/WebAssembly.html
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1 ;; Compiled from add.c:

2 ;; int add (int a, int b) { return a + b; }

3 (module

4 (type (;0;) (func))

5 (type (;1;) (func (param i32 i32) (result i32)))

6 (func $add (type 1) (param i32 i32) (result i32)

7 local.get 1

8 local.get 0

9 i32.add)

10 (memory (;0;) 2)

11 (global (;0;) (mut i32) (i32.const 66560))

12 (global (;2;) i32 (i32.const 1024))

13 (global (;3;) i32 (i32.const 1024))

14 (global (;4;) i32 (i32.const 66560))

15 (export "memory" (memory 0))

16 (export "add" (func $add))

17 (export "__data_end" (global 2))

18 (export "__global_base" (global 3))

19 (export "__heap_base" (global 4))

Listing 2.3: Example if a compiled Wasm module in its textual representation.

memory. The first segment of memory corresponds to the data segment of the compiled C program;

recall that the data segment is the region of memory used to store the initialised static variables of the

program. Given this memory layout, the stack segment of memory can only grow to a maximum of

__heap_base - __data_end. In contrast, the heap segment can grow dynamically as need be using the

instruction grow memory, which allows the program to grow the linear memory by extending it by one

memory page, i.e. an array of 64KiB.

Anatomy of Wasm Modules Listing 2.3 demonstrates the textual representation of a binary module

compiled from a C program. A binary is divided into sections according to the different kinds of entities

declared in it [19]. In this example, we have five sections. First we have a type section, which is a

collection of all function types. Next, the function section, which contains function definitions. Next,

we have a memory section, which specifies the initial size of the memory, set to two pages of 64KiB

in this example. Lastly, we have the global section, which contains four definitions of global variables

and the export section, which declares the functions, memories and variables of the module that can be

externally accessed.

2.2 Symbolic Execution

Symbolic execution is a program analysis technique used to explore all feasible paths of a program

up to a bound. Instead of running a program using concrete values, symbolic execution engines run

the given program with symbolic inputs. Every time the symbolic execution engine hits a conditional
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expression with a symbolic guard, the engine forks the current execution in order to be able to explore

both branches. For each execution path, the symbolic execution engine builds a first order formula,

called path condition, which accumulates the constraints on the symbolic inputs that direct the execution

along that path. In particular, every time a conditional instruction is symbolically executed, the current

path condition is extended with its guard in the then branch and with the negation of its guard in the

else branch. Symbolic execution engines rely on an underlying Satisfiability Modulo Theories (SMT)

solver to check the feasibility of execution paths and check the validity of the assertions supplied by the

developer. An execution path is said to be feasible if it can be realised by at least one concrete path and

a developer-supplied assertion holds at a given program point if the path condition implies it.

Concolic Execution Concolic execution is a special variation of symbolic execution, in which one pairs

up a concrete execution with a purely symbolic execution to avoid interactions with the underlying SMT

solver by exploring one execution path at a time. Concolic execution engines assign concrete values

to symbolic inputs and execute the given program both concretely and symbolically at the same time,

following only the concrete path but constructing the path condition corresponding to that path as in pure

symbolic execution. The constructed path condition is instrumental to concolic execution as it captures

the conditions that must hold for the execution to take the explored path. More specifically, it can be used

to generate new concrete inputs for symbolic variables that will force the exploration of a different path.

To this end, one needs to negate the obtained path condition and query the underlying solver for a model

of the obtained formula. By keeping track of all the path conditions generated via concolic execution, the

engine can enumerate all program execution paths up to a bound, with the advantage of only having to

interact with the underlying solver one time per explored path. Note that in purely symbolic execution,

the engine must query the solver every time it hits a branching point in order to determine whether or

not its then- and else- branches are feasible.

1 int main() {

2 int x = symbolic(), y = symbolic();

3 int a = 4, b = 2;

4 if (x > 0) {

5 b = a + 2;

6 if (x < y)

7 a = (x * 2) + y;

8 }

9 assert(a != b);

10 }

Listing 2.4: Concolic execution example in C, adapted from Listing 2.1.

Concolic Execution: Example Let us now take a look at how concolic execution works in practice.

Consider the program given in Listing 2.4. This program is annotated with a final assert statement,
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which is supposed to hold independently of the values of variables x and y. Hence, in order to determine

whether or not this assertion always holds, one has to explore all the possible execution paths of the

program, which we illustrate in Figure 2.6 in the form of an execution tree. As shown in the figure, the

assertion does not hold when x = 1 and y = 4, which cause variables a and b to be assigned to 6,

violating the final assert statement. Below, we will show how these inputs can be found using concolic

execution.

Start Labels

Branch
Point 

Success

Error

Figure 2.6: Paths explored during concolic execution of the program in Listing 2.4.

As there are three possible execution paths, there will be three concolic executions, each corre-

sponding to a different execution path. In the following, we will refer to these executions as concolic

iterations. During the first concolic iteration, the concrete values associated with the symbolic variables

of the program are picked non-deterministically from the set of all concrete values of their corresponding

type. For this example, we will assume that x and y are respectively set to 0 and 2. These inputs cause

the concolic execution engine to explore the rightmost path of the execution tree, generating the final

path condition: x ≤ 0.

Before the second concolic iteration, the concolic execution engine queries the underlying SMT

solver for a model for the symbolic inputs that satisfies the formula x > 0, corresponding to the negation

of the first path condition. Let us assume that the solver returns the model x = 1 and y = 0. These

inputs cause the concolic execution engine to explore the middle path, generating the path condition:

(x > 0) ∧ (x ≥ y).

Before the third concolic iteration, the concolic execution engine queries the solver for a model for

the symbolic inputs that satisfy the negation of both path conditions found so far:

(x > 0) ∧ ((x ≤ 0) ∨ (x < y)) ≡ (x > 0) ∧ (x < y)
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Assume that the solver outputs the model x = 1 and y = 2. These inputs cause the concolic execution

engine to explore the leftmost path of the execution tree. Observe that this model does not immediately

trigger the assertion violation, since the final values of a and b do not coincide (a = 4 and b = 6). In order

to understand how the concolic execution engine finds the model that violates the assertion, one has to

consider the concolic state at the point where the assert statement is encountered.

When the concolic symbolic engine finds the assert, the concolic state is as follows:

x 7→ (1, x) y 7→ (2, y) a 7→ (4, 2× x+ y) b 7→ (6, 6) PC ≡ (x > 0) ∧ (x < y)

Given this concolic state, the expression a ̸= b evaluates to the concrete value true and the symbolic

value (2× x+ y) ̸= 6. In order to establish that the assertion holds, the concolic execution engine must

prove that the symbolic expression being asserted is implied by the current path condition; put formally:

(x > 0) ∧ (x < y)⇒ (2× x+ y) ̸= 6

In order to check the validity of this implication, the concolic execution engine queries the underlying

SMT solver for the satisfiability of its negation:

(x > 0) ∧ (x < y) ∧ (2× x+ y) = 6

which is satisfied by the model x = 1 and y = 4, disproving the implication and witnessing the assertion

failure.

Summary

This chapter provides the necessary background for the rest of this thesis. First, we introduced Wasm,

reviewing its syntactic structure, semantic domains, and concrete semantics. Then, we introduced the

standard technologies for compiling high-level languages, such as C/C++ or Rust to Wasm, briefly ex-

plaining how the C memory is represented at the Wasm level. We finish with a succinct account of

symbolic and concolic execution, illustrating how concolic execution works using a simple example. The

following chapter overviews the relevant research work on these subjects.
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In this chapter we discuss the related work. We first discuss both classic symbolic execution and

concolic execution, giving an overview of state-of-the-art tools that use these kinds of analyses. Sec-

ondly, we briefly look into modelling runtime system-level interactions in the context of symbolic execu-

tion. Thirdly, we review techniques for implementing symbolic memory models in the context of symbolic

execution tools. Lastly, we discuss state-of-the-art analysis tools for Wasm.

3.1 Symbolic Execution: Overview

Symbolic execution has historically been used to discover severe errors in a vast spectrum of systems,

such as web servers [22], file systems [23], and device drivers [24]. Additionally it has been success-

fully applied to a wide range of programming languages such as C [10], Java [14], and Python [25]. In

the context of the web, there are several state-of-the-art tools to symbolically execute JavaScript pro-

grams [26–30], which confirms the relevance of symbolic execution for the analysis and testing of web

applications.

Symbolic execution is divided into two main classes: static and dynamic (also referred to as concolic).

Static symbolic execution engines, such as [26,27,31–34] explore the entire symbolic execution tree up

to a pre-established depth. Concolic execution engines, such as [9,10,14,28–30,35], work by pairing up

symbolic execution and concrete execution so that the symbolic execution may fall back to the concrete

execution whenever it produces symbolic formulas that are not supported by the underlying first order

solver. As consequence, a major advantage of concolic execution over classic symbolic execution is that

concolic execution requires less interactions with the underlying solver and a simpler memory model.

Given the limited scope of this thesis and the dimension of the body of research on both static and

dynamic symbolic execution tools, we encourage the reader to see [36–38] for more comprehensive

surveys on the topic. We continue by briefly surveying related work regarding static symbolic execution

and then exploring more deeply the related work regarding concolic execution, as this is the main focus

of our work.

3.1.1 Static Symbolic Execution

Static symbolic execution was the pioneer technique to symbolically analyse programs. Table 3.1 sum-

marises some state-of-the-art symbolic execution tools that apply this classic technique.

In a nutshell, the tools using the classic symbolic execution can theoretically enumerate all possible

control flow paths that are possible in a program up to a bound. Thus, modelling all these runs would

provide a very sound analysis of the software being verified. However, this task is quite unfeasible,

especially on big software projects, requiring the tools to make compromises for the sake of efficiency.
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Tool Languages Applications

EFFIGY [31] PL/I Program analysis, Interactive debugging

Symbolic PathFinder [32] Java
Directed incremental symbolic execution [39],
Java PathFinder [11] continuity,
Probabilistic symbolic execution [40]

Generalized framework [33] Java
Correctness checking of distributed algorithms;
Test input generation for flight software

Rosette [34] Racket Implementation of solver-aided languages.

Cosette [26] JavaScript

Whole program symbolic testing of JavaScript
libraries; Compositional debugging of
separation logic specifications of JavaScript
programs

JaVerT 2.0 [27] JavaScript
Whole program symbolic testing, verification
and automatic compositional testing

KLEE [9] C, C++, Rust
Automatic generation of high-coverage tests on environ-
mentally-intensive programs

Table 3.1: Representative tools implementing classic symbolic execution.

Tool Languages Applications

DART [10] C Session Initiation Protocol1

CUTE [14] C
Scalable concolic execution for code with dynamic data
structures

jCUTE [14] Java
Scalable concolic execution for code with dynamic data
structures

MAYHEM [35] x86 Assembly
Find exploitable vulnerabilities in Windows and Linux
programs

Kudzu [28] JavaScript Disclosure of client-side code injection vulnerabilities
SymJS [29] JavaScript Automatic testing of client-side JavaScript web applications
MultiSE [30] JavaScript Multi-path symbolic execution

Table 3.2: Representative tools implementing some form of concolic execution.

3.1.2 Concolic Execution

Concolic execution uses a combination of symbolic and concrete execution in order to mitigate the

issues inherent to static symbolic execution. Table 3.2 presents symbolic execution engines that employ

concolic techniques.

DART DART [10] provides means to automatically test C programs. It detects errors such as pro-

gram crashes, violated assertions and non-termination. DART tests each function in isolation and does

not consider preconditions. Concretely, it consists of three parts: directed generation of test inputs,

automated extraction of unit interfaces from source code, and random generation of test inputs.

24



CUTE CUTE [14] is a concolic unit testing engine for programs written in C. Unlike DART, it targets

functions with preconditions such as data structure implementations. Moreover, it also achieves bet-

ter performance than DART by optimising the underlying constraint solver, specialising it for the path

conditions that arise in concolic execution.

MAYHEM MAYHEM [35] is a concolic execution engine for Windows and ELF binary programs. It relies

on partial memory modelling to reason about memory at the binary level.

Kudzu Kudzu [28] is a system for concolically executing JavaScript Web applications. It relies on black

box testing, given the URL of the web application, it generates test cases to explore the execution space

of the application. Kuduzu was able to successfully find code injection vulnerabilities in client-side web

applications. It was also reported that it does not produce false positives.

SymJS SymJS [29] is another framework for automatic testing of client-side JavaScript applications.

In contrast to Kuduzu, which mainly focuses on string reasoning, SymJS synthesises sequences of Web

events in order to dynamically explore event-driven JavaScript code.

MultiSE MultiSE [30], as the name suggests, performs multi-path symbolic execution of JavaScript

programs. To reduce the number of symbolic paths, MultiSE employs a algorithm for incrementally

merging symbolic states together during symbolic execution. However, this techniques requires a differ-

ent representation of concolic states, where variables are mapped to a set of symbolic expressions.

3.2 Symbolic Execution: Runtime Models

An essential aspect of a symbolic execution engine is handling a program’s interaction with the surround-

ing software stack. A typical example is the data flows that take place through the underlying operating

system, such as reading data from a file, receiving network packets through a sockets, and reading/set-

ting environment variables. Therefore, the degree to which the engine can detect these symbolic flows

is directly related to its soundness.

In [36, 38] we have a comprehensive overview of the various methods state-of-the-art tools used to

deal with this problem. In tools such as DART [10], and CUTE [14], system interactions are dealt with

by invoking the system-level function with concrete arguments. The major downside of this approach is

the inability to explore the entire state space of the program.

The other approach to handle system-level calls is to create summaries of their side effects [9,41,42].

These summaries essentially model the behaviour of the function code that is being called. In KLEE [9],

we have a detailed example of this technique utilised to interact with the file system. A call to fopen()
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needs to return either a valid file descriptor or some error code. Thus, if the call is made with a symbolic

argument, then KLEE will refer to its symbolic file system, which consists of a directory with N symbolic

files whose number and sizes are specified by the user. Consequently, an operation on a symbolic file is

a branch point with N+1 possible outcomes, N returns a file descriptor to one symbolic file and one that

fails. The downside of this approach is that typically the user must generate these summaries manually.

3.3 Symbolic Execution: Memory Models

Another critical aspect of symbolic execution is how concrete and symbolic memory should be modelled

to support programs with pointers and arrays. This requires extending our notion of a memory store

by mapping variables and memory addresses to symbolic expressions of concrete values. In [36], the

authors provide a review of work in this area and in [43] on the semantic modelling of storage operations.

In [44], the authors roughly classify memory models as either high-level or low-level. According to

the authors, high-level memory models are models where the model itself provides some guarantees of

separation or enforcement of memory bounds. In contrast, low-level models are essentially just arrays

of bytes where guarantees, such as those inherent in high-level memory models, are not present and

must be enforced through logical assertions.

In [45–47], the authors present some examples of high-level memory modelling. The classic example

is the encoding of the “struct” construct in C, where each field is a separate memory store mapping

memory addresses to contents. This representation greatly facilitates reasoning over programs that

manipulate linked data structures, e.g., linked lists, because when assigning a value to a record in C

(node->next = nnode), we guarantee the rest of the values that node points to are unchanged.

Low-level memory modelling examples are explained in [48,49]. With this model, a memory store is

essentially just a total function, and mapping memory addresses to bytes. In low-level memory models,

allocations, loads, and stores must be defined in terms of byte manipulations. Consequently, reasoning

about programs and programs transformations is inherently more difficult.

In [44] the authors present CompCert’s memory model, which is described as a hybrid memory

model. The rationale for this categorisation is that it assures specific properties of a high-level model,

such as separation between blocks obtained in memory allocation, bounds checks during memory

stores, and a particular return type for loads overlapping a prior store operation. However, it offers no

separation over accesses performed within the same memory block, which violates the principle of spatial

separation [45], requiring additional reasoning over field offsets, much like a low-level model. However,

in version 2.0 of CompCert’s memory model [3], the authors overcome these limitations by exposing

the byte-level in-memory representation of integers and floats and introducing fine-grained, byte-level

permissions instead of for memory bounds.
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Tool Analysis Type Applications

Manticore [13] Symbolic Execution
Symbolically executes binaries and smart
contracts

WANA [12] Symbolic Execution
Finds vulnerabilities in EOSIO and Ethereum
smart contracts in Wasm bytecode format

Octopus [51] Static analysis framework
Performs control flow analysis, call flow analysis, and
disassembles Wasm modules.

EOSafe [52] Symbolic Execution
Detects vulnerabilities in EOSIO smart contracts
in Wasm bytecode format.

Vivienne [53] Relational Symbolic Execution Analysis of Wasm cryptographic libraries for
constant-time violations.

Table 3.3: Representative for Wasm code analysis.

In Gillian-C [15], the authors provide an OCaml implementation of the concrete memory model of

CompCert [3] and another OCaml implementation of a symbolic memory model inspired from Com-

pCertS [50]. In both models, the memory is a collection of separated blocks where each block is an

array of a given size. Additionally, pointers are modelled as block-offset pairs: meaning that a pair [b, o]

is a pointer to the o-th element in block b. Furthermore, the authors implement permission tables for both

memory models, which are said to describe the allowed operations for a given cell (e.g. Readable and

Writable).

3.4 Analysis Tools for Wasm

Now we discuss the current state-of-the-art analysis tools available for Wasm. Table 3.3 summarises

some state-of-the-art for static analysis of Wasm code.

Manticore Manticore [13] is a symbolic execution framework for binaries and smart contracts. As a

result of its modularity, Manticore supports traditional computing environments (x86/64, ARM) and ex-

otic ones, such as the EVM. Manticore’s modular design consists of four important modules. First, the

core engine is a generic platform-agnostic symbolic execution engine. Secondly, the native execution model

abstracts hardware execution to implement the high-level execution interfaces that the core engine

expects. The third is the Ethereum execution model, which can simulate the entire EVM. Lastly, the

auxiliary modules interface allows Manticore to use different SMT solvers seamlessly.

Although Manticore can simulate the entire EVM because of its Ethereum execution model, it must

use symbolic transactions, where both value and data are symbolic in order to explore the state space

of a contract generically. With the release of version 0.3.3, Manticore is now able to execute Wasm
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binaries2 symbolically. Current development efforts are focused on furthering the support of Wasm,

but in the future, developers aim to fully support Ethereum-flavored Wasm3 that will replace the EVM

language.

WANA WANA [12] is a symbolic execution engine for Wasm bytecode. WANA supports vulnerability

detection of both EOSIO and Ethereum smart contracts. WANA’s analysis is composed of three stages.

First, it must parse Wasm bytecode. Secondly, WANA traverses the paths of the Wasm code with

symbolic inputs. WANA prepares a frame as its execution context, including symbolic arguments, local

variables, return values and references to its module, and then sequentially executes the instructions

in the function body. Lastly, WANA performs vulnerability analysis. If a vulnerability is detected, then a

report is generated.

Octopus Octopus [51] is a security analysis framework for Wasm modules and Blockchain Smart

Contracts. It currently performs control flow analysis, call flow analysis, disassembles and converts to

SSA IR Wasm modules. However, symbolic execution will soon be supported.

EOSafe EOSafe [52] is a static analysis framework that can automatically detect vulnerabilities in

EOSIO smart contracts in Wasm bytecode. EOSafe leverages Octopus [51] to create a Control Flow

Graph (CFG) with disassembled Wasm instructions which are fed into the two-step analysis pipeline.

First, using the generated CFG, EOSafe locates suspicious functions. Then, with the symbolic execution

engine and a EOSIO library emulator, it performs symbolic execution over the disassembled Wasm

instructions to find vulnerabilities.

Vivienne Vivienne [53] is an open-source tool to analyse Wasm cryptographic libraries for constant-

time violations automatically. Vivienne takes three inputs: (1) a Wasm module to analyse, (2) a Security Policy.

i.e., memory regions and input parameters of the entry functions, and (3) the entry point, that is the first

function to analyse. Then Vivienne performs relational symbolic execution (RelSE) over the Wasm code

on the entry function, reporting any constant-time violation.

Summary

First, we saw that tools for the verification of web application exist in the context of JavaScript pro-

grams [26–30]. Then, we learned there exist tools for symbolically analysing generic Wasm modules,

such as Manticore [13] and WANA [12]. However, all of these tools use classic symbolic execution in

2https://blog.trailofbits.com/2020/01/31/symbolically-executing-webassembly-in-manticore/
3https://github.com/ewasm/design
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order to perform their analysis, and as we have seen in [26, 27, 31–34], this type of analysis has major

limitations regarding performance. With our work, we intend to take the benefits of concolic symbolic

execution tools, such as [9,10,14,28–30,35], and create a robust and efficient tool for the verification of

Wasm code, which is gaining territory in the land of Web programming.
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This chapter presents our current concolic execution engine for Wasm named WebAssembly Sym-

bolic Processor (WASP). WASP is written in OCaml on top of the official Wasm reference interpreter1.

We begin by giving an overview of the design of WASP (Section 4.1). Next, we explain the Wasm

symbolic memory model at the core of WASP (Section 4.2) and describe how WASP interacts with

its underlying constraint solver (Section 4.3). Lastly, we present an optimisation to concolic execution

developed in the context of WASP (Section 4.4).

4.1 Overview

The goal of WASP is to explore multiple execution paths of the program to be analysed in order to

uncover potential execution errors. To this end, the Wasm programs given to WASP must be annotated

with the first order assertions to be validated by WASP. WASP explores all the execution paths of the

given program up to a pre-established depth. If no assertion failure is found, WASP provides a bounded

verification guarantee. Otherwise, it outputs a concrete counter-model that triggers that failure.

WASP was developed on top of the Wasm reference interpreter1, which we extended with symbolic

facilities according to the high-level architecture described in Figure 4.1. In particular, we extended the

original code-base of the reference interpreter with: (1) parsing facilities for the symbolic instructions

required for declaring and reasoning over symbolic inputs; (2) a new concolic interpreter module, imple-

menting the main concolic loop and the concolic execution of Wasm instructions; (3) a new concolic state

module, implementing the main data structures we use to represent Wasm’s concolic values, stacks, and

memories; and (4) a dedicated first order solver used to encode the logic of WASP into the logic of its

underlying constraint solver, Z3 [54].

Let us now take a look at how WASP concolically executes the Wasm program given as input. Firstly,

the given program is parsed by our Extended Parser, generating an abstract syntax tree that is then

passed to the Concolic Interpreter. The Concolic Interpreter implements the main concolic execution

loop exploring one execution path at a time and generating for each path its corresponding path con-

dition. The interpreter executes the given program by concolically evaluating one instruction at a time

following our small-step concolic semantics of Wasm. Concolic execution requires the interpreter to

keep track of both the program’s concrete and symbolic state. To this end, we combine the concrete

domains of the original reference interpreter with new symbolic domains modelling Wasm’s symbolic

values, stacks and memories. At the end of each concolic iteration, the Concolic Interpreter must in-

teract with Z3 to determine the concrete values of the symbolic inputs for the next concolic iteration.

This requires converting the logical formulas constructed by WASP into the logic of Z3. This is done by

a dedicated First Order Solver that essentially translates WASP formulas to Z3 formulas using the Z3

OCaml bindings.

1https://github.com/WebAssembly/spec/tree/master/interpreter
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Figure 4.1: High-level architecture of WASP.

In summary, the main components of WASP are the following:

• Extended Parser: an extension of the official Wasm parser that supports the standard instructions

for creating symbolic inputs, declaring constraints over those inputs, and checking the constraints

that the generated symbolic outputs are supposed to satisfy. Besides these instructions, WASP

also supports a variety of instructions for explicitly creating and manipulating first order formulas.

• Concolic Interpreter: an implementation of a concolic interpreter for Wasm that explores all the

execution paths of the given program up to a pre-established depth. The concolic interpreter

combines concrete and symbolic executions, exploring one execution path at a time and generating

for each path its corresponding path condition. Concolic iterations are driven by an evaluation

function that follows our small-step concolic semantics of Wasm. Starting from the initial state, our

concolic evaluation function iteratively applies the appropriate small-step rule until no rule can be

further applied. At the end of each concolic iteration, the concolic interpreter interacts with Z3 to

obtain the concrete values of the symbolic inputs for the next concolic iteration. If no such values

can be found, the execution terminates.

• Concolic Domains: custom-made data structures representing Wasm’s concolic values, stacks

and memories. Each concolic domain combines its original concrete version with a custom-made

symbolic counterpart. For instance, while concrete stacks are modelled as lists of concrete values,

concolic stacks are modelled as lists of concrete values paired with symbolic values. The same

applies to Wasm’s linear memory. While the concrete linear memory is simply an array of concrete

bytes, the concolic linear memory is an array of pairs, each consisting of a concrete and a symbolic

byte.
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• First Order Solver: an implementation of an encoding from the logic of WASP into the logic of Z3.

Every time the concolic interpreter needs to check a given formula’s satisfiability, it first converts

it into a native Z3 formula and then queries Z3 for the satisfiability of the obtained formula. Our

encoding represents Wasm integers and floats, respectively, as Z3 bit-vectors and floats. Observe

that the semantics of Wasm’s machine integers coincides with that of Z3 bit-vectors; hence, oper-

ations on Wasm’s integers can be straightforwardly translated to equivalent bit-vector operations

at the Z3 level.

WASP 0.1 The version of WASP presented in this work started from a preliminary prototype developed

in the context of a previous thesis [55], WASP 0.1. Our version of WASP significantly improves on the

original prototype in several respects:

• It includes a new symbolic memory model for Wasm closer to its concrete memory model, allowing

for symbolic reasoning about byte-level operations.

• It includes a new encoding of the logic of WASP into that of Z3 based on bit-vectors and floating-

point arithmetic in contrast to the original prototype, which used integer and real arithmetic.

• It supports the full syntax of Wasm, while the original prototype only supported a small fragment.

• It was designed and optimised to allow for the execution of real-world C code compiled to Wasm,

while the original project was only applied to toy examples directly written in Wasm.

4.1.1 Concolic Execution Semantics

We define a concolic semantics of Wasm, which we use to guide the implementation of the concolic

interpreter at the core of WASP. Our concolic semantics operates on concolic states, which can be

viewed as pairs of concrete states and symbolic states. Concolic states are therefore inhabited by both

concrete values and symbolic values. Formally, symbolic values are given by the following grammar:

ŝ := c | x̂ | ⊖ (ŝ) | ⊕ (ŝ, ŝ) | ⊗ (ŝ, ŝ, ŝ) (4.1)

Symbolic values include: Wasm concrete values c, symbolic variables x̂, and various Wasm unary and

binary operators, respectively ranged by ⊖ and ⊕. Additionally, there is a ternary operator ⊗ reserved

for denoting symbolic byte expressions. In WASP, symbolic variables are prefixed with a ’#’.

As discussed above, we extended the syntax of Wasm with various instructions for creating and

reasoning over symbolic values. In the formalism, we model the following three instructions:

(instructions) e ::= . . . | sym assume | sym assert | t.symbolic
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Where: t.symbolic is used to create a symbolic value of type t; sym assume is used to add the

constraint on top of the stack to the current path condition; and sym assert is used to check whether or

not the constraint on top of the stack is implied by the current path condition.

Before proceeding to the description of the concolic semantics, we must first define concolic states. A

concolic state is composed of: (1) a concolic memory µ̃, mapping integer addresses to pairs of concrete

bytes and symbolic bytes; (2) a concolic local store ρ̃, mapping local variable indexes to pairs of concrete

and symbolic values (e.g. ρ̃ = [0 7→ (2,#y)]); (3) a concolic global store δ̃ mapping global variable

indexes to pairs of concrete and symbolic values (e.g. δ̃ = [0 7→ (2,#y)]); (4) a concolic stack s̃t,

consisting of a sequence of pairs of concrete and symbolic values (e.g. s̃t = (2,#y) :: (0,#x)); (5) a

logical environment ε mapping symbolic variables to concrete values (e.g. ε = [#x 7→ 0,#y 7→ 2]); and

(6) a path condition π keeping track of all the constraints on which the current execution has branched so

far. All concolic domains are obtained by lifting the respective concrete domains from concrete values

to pairs of concrete and symbolic values. For instance, while a concrete local store maps local variable

indexes to concrete values, a concolic local store maps local variable indexes to pairs of concrete and

symbolic values.

In contrast to the concolic domains, logical environments do not have a counterpart in concrete

execution. The concolic interpreter uses the logical environment to keep track of the concrete values

associated with the symbolic variables. Essentially, the logical environment stores the bindings of the

symbolic variables computed at the beginning of each concolic iteration.

The concolic semantics makes use of computation outcomes [15] to capture the flow of execution.

We consider four types of outcomes: (1) the non-empty continuation outcome Cont(e), signifying that

the execution of the current instruction generated a new instruction to be executed next; (2) the empty

continuation outcome Cont, signifying that the execution may proceed to the next instruction; (3) the

trap outcome Trap, signifying that the execution of the current instruction generated a Wasm trap; (4)

the failed assertion outcome AsrtFail, signifying that the execution of the current instruction resulted in

an assertion failure; and (5) the failed assumption outcome AsmFail, signifying that the execution of the

current instruction resulted in an assumption failure. The concolic semantic domains are summarised

below. For clarity, we distinguish the concolic domains from their concrete counterparts by adding a

tilde over the original symbol; for instance, we use ρ for the concrete local store and ρ̃ for its concolic

counterpart.
Concolic Semantic Domains

LOCAL STORE ρ̃ : i32 → c× ŝ

STACK s̃t : (c× ŝ) list

LOGICAL ENV ε : string → c

PATH COND π ∈ Π : bool symbol expr

GLOBAL STORE δ̃ : i32 → c× ŝ

MEMORY µ̃ : i32 → c× ŝ

OUTCOME õ ::= e | · | Trap | AsrtFail |
AsmFail

SYMBOLIC EXPR ŝ ::= c | x̂ | ⊖ (ŝ) | ⊕ (ŝ, ŝ)

36



IF-TRUE
s̃t = ((c, ŝ) :: s̃t

′
) c ̸= 0 π′ = ((ŝ ̸= 0) ∧ π)

if (e1)(e2), s̃t, π ⇒cs s̃t
′
, π′,block(e1)

IF-FALSE
s̃t = ((c, ŝ) :: s̃t

′
) c = 0 π′ = ((ŝ = 0) ∧ π)

if (e1)(e2), s̃t, π ⇒cs s̃t
′
, π′,block(e2)

STORE
µ̃′ = store bytes(µ̃, k + o, (c, ŝ))

t.store o, ((k, ŝk) :: (c, ŝ) :: s̃t), µ̃ ⇒cs s̃t, µ̃′, ·

LOAD
n = size(t) (c, ŝ′) = load bytes(µ̃, k + o, n)

t.load o, ((k, ŝ) :: s̃t), µ̃ ⇒cs ((c, ŝ′) :: s̃t), µ̃, ·

GETLOCAL

get local i, ρ̃, s̃t ⇒cs ρ̃, (ρ̃(i) :: s̃t), ·

SETLOCAL
ρ′ = ρ[i 7→ (c, ŝ)]

set local i, ρ̃, ((c, ŝ) :: s̃t) ⇒cs ρ̃′, s̃t, ·

SYMASSERT
c = 0

sym assert, ρ̃, ((c, ŝ) :: s̃t), ε, π ⇒cs AsrtFail

SYMASSERT
c ̸= 0 (π ∧ ¬ŝ) SAT

sym assert, ρ̃, ((c, ŝ) :: s̃t), ε, π ⇒cs AsrtFail

SYMASSERT
c ̸= 0 (π ∧ ¬ŝ) UNSAT

sym assert, ρ̃, ((c, ŝ) :: s̃t), ε, π ⇒cs ρ̃, s̃t, ε, π, ·

SYMASSUME
s̃t = ((c, ŝ) :: s̃t

′
) c = 0 π′ = (¬ŝ ∧ π)

sym assume, ρ̃, s̃t, ε, π ⇒cs ρ̃, s̃t
′
, ε, π′,AsmFail

SYMASSUME
s̃t = ((c, ŝ) :: s̃t) c ̸= 0 π′ = (ŝ ∧ π)

sym assume, ρ̃, s̃t, ε, π ⇒cs ρ̃, s̃t
′
, ε, π′, ·

SYMBOLIC-FRESH
x̂ /∈ ε i ∈ t ε′ = ε[x̂ 7→ i]

t.symbolic x̂, s̃t, ε ⇒cs ((i, x̂) :: s̃t), ε′, ·

SYMBOLIC
x̂ ∈ ε

t.symbolic x̂, s̃t, ε ⇒cs ((ε(x̂), x̂) :: s̃t), ε, ·

Figure 4.2: WebAssembly symbolic semantics: e, ρ̃, s̃t, ε, π, δ̃, µ̃ ⇒cs ρ̃′, s̃t
′
, ε′, π′, δ̃′, µ̃′, õ.

We formalise the concolic semantics of Wasm instructions using the mathematical relation ⇒cs .

Semantic judgements are of the form:

e, ρ̃, s̃t, ε, π, δ̃, µ̃ ⇒cs ρ̃′, s̃t
′
, ε′, π′, δ̃′, µ̃′, õ (4.2)

meaning that the concolic evaluation of the instruction e in the local store ρ̃, stack s̃t, logical envi-

ronment ε, current path condition π, global store δ̃, and memory µ̃ results in a new local store ρ̃′,

stack s̃t
′, logical environment ε′, path condition π′, global store δ̃′, memory µ̃′, and an outcome õ.

This relation is defined by a set of semantic rules of which a representative selection is shown in Fig-

ure 4.2 and explained below. Observe that, unlike the concrete semantic rules, the concolic semantic

rules are non-deterministic, meaning that more than one rule may be applied at a given point during

the execution. As for the concrete semantics, we omit the elements of the configuration that are nei-

ther updated nor inspected by the current rule, writing, for instance, e, ρ̃, s̃t ⇒cs ρ̃′, s̃t
′
, õ to mean

e, ρ̃, s̃t, ε, π, δ̃, µ̃ ⇒cs ρ̃′, s̃t
′
, ε, π, δ̃, µ̃, õ. The concolic rules are explained below.

IF The IF rule analyses the concrete value c on top of the stack (c, ŝ) :: s̃t. If c ̸= 0, then the path

condition is conjoined with the symbolic expression associated with the value on top of the stack (ŝ ̸=

0) ∧ π. The resulting outcome is a block with the set of instructions e1, corresponding to the “then”
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branch. If c = 0, the opposite happens, the resulting path condition is (ŝ = 0) ∧ π, and the outcome is a

block with the set of instructions e2, corresponding to the “else” branch.

STORE The STORE rule is very similar to the corresponding rule in the concrete semantics. The dif-

ference is that a function called store bytes unpacks each byte of (c, ŝ) into individual mappings on the

symbolic memory. We formalise this function in Section 4.2.

LOAD The LOAD rule is very similar to the corresponding rule in the concrete semantics. The only

difference now is that there exists a function load bytes that will concatenate n bytes, starting at k + o,

from the symbolic memory, where n is the size of t. We formalise the function load bytes in Section 4.2.

SYMASSERT The SYMASSERT rule will look at the value c on top of the stack (c, ŝ) :: s̃t. If c = 0, it

immediately raises AsrtFail and the interpreter stops. Otherwise, we have to check if that the current path

condition implies that the symbolic expression being asserted is different from 0; formally: π ⇒ (ŝ ̸= 0).

Checking the validity of π ⇒ (ŝ ̸= 0) is equivalent to checking the satisfiability of ¬(π ⇒ (ŝ ̸= 0));

formally: π ⇒ (ŝ ̸= 0) is valid if and only if, ¬(π ⇒ (ŝ ̸= 0)) is not satisfiable. Simplifying ¬(π ⇒ (ŝ ̸= 0)),

we obtain the formula π ∧ (ŝ = 0). Hence, we check the satisfiability of π ∧ (ŝ = 0) and, if it is satisfiable,

then the assertion fails and the outcome AsrtFail produced. Otherwise, the assertion holds and the

program may continue, as given by the outcome ·.

SYMASSUME The SYMASSUME rule analyses the value c on top of the stack. This instruction is used

to state that the symbolic expression associated with the value on top of the stack, ŝ, is assumed to be

different from 0. Hence, if the value c is equal to 0, the concrete values of the current execution do not

satisfy the programmer’s assumptions, which means that the current concolic iteration can be discarded

because it is not relevant to the programmer. To achieve this, the semantics leaves the current concolic

state unchanged, generating the outcome AsmFail and extending the current path condition with the

formula (ŝ = 0). Suppose the value c on top of the stack is different from 0. In that case, the concolic

execution may proceed with the current concolic iteration, simply conjuncting the formula (ŝ ̸= 0) with

the current path condition.

SYMBOLIC The SYMBOLIC-FRESH and SYMBOLIC rules are used for the creation of a symbolic variable

of the type t, named x̂. If the variable x̂ is already present in the mappings of the logical environment,

x̂ ∈ ε, then this variable already exists and its mapped value is inserted on top of the stack (ε(x̂), x̂) :: s̃t.

Suppose this variable does not exist in the logical environment. In that case, a new entry is added to

the logical environment, where x̂ is mapped to a random value i of type t, resulting in the new logical

environment ε′ = ε[x̂→ i], and (i, x̂) being put on top of the stack.
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4.1.2 Concolic loop

Algorithm 4.1 Concolic Interpreter main loop.

1: function CONCOLICEXECUTE(e, ρ̃, s̃t, δ̃, µ̃)
2: Π← true
3: while Π is SAT ∧ belowLimit do
4: εi ← Model(π)
5: e, ρ̃, s̃t, εi, true, δ̃, µ̃ ⇒cs ρ̃′, s̃t

′
, ε′, π′, δ̃′, µ̃′, õ

6: if õ ̸= Error then
7: Π← Π ∧ ¬π′

8: else
9: return false

10: end if
11: end while
12: return true
13: end function

Concolic execution engines execute a given program multiple times in order to explore all possible

execution paths. Algorithm 4.1 presents the main analysis loop, which is executed in the concolic inter-

preter. To generate new concrete inputs at the end of each concolic iteration, the concolic interpreter

maintains a global path condition Π representing all the execution paths that remain to be explored. At

the beginning of each concolic iteration, the satisfiability of the global path condition is checked with the

help of Z3. If Π is satisfiable, Z3 returns a model, which the engine uses to construct a new logical envi-

ronment, mapping the symbolic variables of the program being analysed to new concrete values. If Π is

not satisfiable, the execution stops, given that all possible execution paths have already been explored.

Initially, Π is set to true, meaning that all paths still have to be explored. At the end of each iteration, the

engine updates the global path condition to Π ∧ ¬π′, where π′ is the final path condition of the iteration

at hand. By adding ¬π′ to the global path condition, we prevent that future concolic iterations go down

the same execution path as the current iteration.

4.2 Symbolic Memory

Wasm code often needs to operate over the in-memory representation of data at the finer-grained level of

bytes or bits. One such example is given in Listing 4.2, which shows a real-world function for converting

the endianness of a 32-bit unsigned integer. To help explain the example, let us first consider the

corresponding C function given in Listing 4.1. This example receives an unsigned integer parameter x

and returns the unsigned integer obtained by swapping the order of the bytes of x. Before proceeding to

the description of the example, recall that: (1) the union data type is used for storing different data types

in the same memory location; (2) in a standard 32-bit architecture, characters are represented by one

byte and integers by four bytes; and (3) local variables are stored in the stack segment of the C memory.
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1 unsigned int swap(unsigned int x) {

2 union {

3 unsigned int i;

4 char c[4];

5 } src, dst;

6

7 src.i = x;

8 dst.c[3] = src.c[0];

9 dst.c[2] = src.c[1];

10 dst.c[1] = src.c[2];

11 dst.c[0] = src.c[3];

12 return dst.i;

13 }

Listing 4.1: Symbolic memory manipulation exam-
ple, taken from [3].

1 (func $swap (param $x i32) (result i32)

2 local.get $src

3 local.get $x

4 i32.store

5 local.get $dst

6 local.get $src

7 i32.load8_u offset=0

8 i32.store8 offset=3

9 local.get $dst

10 local.get $src

11 i32.load8_u offset=1

12 i32.store8 offset=2

13 ;; ...

14 return)

Listing 4.2: Wasm code from Listing 4.1.

The swap function first declares two variables src and dst, which can hold either an unsigned integer

or an array of four characters. Note that the two members of this union take exactly the same space, 4

bytes. Then, it copies the four bytes of x to the segment of memory referenced by src. Next, it will copy

each individual byte of src to the segment of memory referenced by dst in reverse order; that is the last

byte of src will be the first byte of dst and so on and so forth. Finally, the function returns the integer

value consisting of the four bytes of dst.

Note that the same segment memory is accessed differently depending on the member of the union

type that is used to interact with it. If one uses the union member i, one reads/writes four bytes from/into

the corresponding memory segment. Conversely, if one uses the union member c, one reads/writes a

single byte from/into the corresponding memory segment. Hence, this example clearly demonstrates

the need for byte-level reasoning in symbolic execution tools for low-level languages.

Byte-Level Operators In order to reason about byte-level memory operations, we make use of two

dedicated operators concat and extract, such that:

• the expression concat(ŝ1, ŝ2) denotes the bit-vector resulting from the concatenation of the bit

vectors denoted by ŝ1 and ŝ2. For instance, it holds that concat(0x0000, 0xBEEF) = 0x0000BEEF.

• the expression extract(ŝ, h, l) denoting the bit-vector corresponding to the extraction of the bytes

of the bit-vector denoted by ŝ that occur between the limits l and h. This means that the expres-

sion extract(ŝ, h, l) denotes a bit-vector of size n, where n = h − l. For instance, it holds that

extract(0x0000BEEF, 1, 0) = 0xEF.

Given that our underlying Z3 encoding represents all primitive types as bit-vectors, the encoding of these

operators into the logic of Z3 is straightforward as they have equivalent Z3 operators.
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Byte-Addressable Memory Note that our concolic Wasm memory is a mapping from integer indexes,

representing concrete memory addresses, to pairs of concrete and symbolic bytes. This means that

before we store a given symbolic expression in memory, we have to obtain the expressions denoting its

corresponding bytes. Conversely, when loading a primitive type from memory, we must concatenate the

symbolic expressions denoting its component bytes to obtain the symbolic expression that denotes the

full value. To do this, we enlist two helpers:

• The function store bytes(µ̃, l, (c, ŝ)), that individually unpacks each concrete and symbolic byte

from the value pair (c, ŝ), using the extract operator, and then sequentially stores the obtained

concrete and symbolic bytes into the segment of µ̃ pointed to by the l, resulting in a new symbolic

memory µ̃′.

• The function load bytes(µ̃, l, n), that sequentially loads n concrete and symbolic bytes from the

concolic memory and concatenates them using the concat operator, resulting in a new concolic

pair of the form (c, ŝ).

We mathematically formalise the functions store bytes and load bytes in the table below.

Memory Operations

STOREBYTES

n = |c| ci = extract(c, i, i− 1)|ni=1 ŝi = extract(ŝ, i, i− 1)|ni=1

store bytes(µ̃, l, (c, ŝ)) = µ̃ [l + (i− 1) 7→ (ci, ŝi)] |ni=1

LOADBYTES

(ci, ŝi) = µ̃(l + (i− 1))|ni=1 c = concat(c1, . . . , cn) ŝ = concat(ŝ1, . . . , ŝn)

load bytes(µ̃, l, n) = (c, ŝ)

Byte-level Simplifications While the concrete application of the operators extract and concat always

yields a fully resolved concrete value, it is often not possible to resolve the application of these operators

to symbolic values. For instance, the application of concat to two symbolic values ŝ1 and ŝ2 simply yields

the symbolic expression concat(ŝ1, ŝ2). As every time WASP interacts with the heap, it applies byte-level

operators to the values being stored or loaded, concolic execution rapidly increases the complexity of

the symbolic expressions handled by the program. This constitutes a serious problem as the additional

complexity introduced by byte-level operators is detrimental to the overall performance of WASP. To

counter this issue, we apply two simple algebraic simplification to symbolic values, every time a symbolic

value is loaded from memory. The proposed simplification rules are given below.

Simplification 4.2.1 (Symbolic Extract rule). Given a symbolic expression ŝ denoting a value of type t,
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the following implication holds:

h− l = size(t)⇒ extract(ŝ, h, l) = ŝ

Simplification 4.2.2 (Symbolic Concat rule). For any symbolic expression ŝ, it holds that:

concat(extract(ŝ, h,m), extract(ŝ,m, l)) = extract(ŝ, h, l)

Back to the example Let us now consider the execution of the function swap with a symbolic integer

x. Figure 4.3 illustrates the symbolic content of the C stack: (a) immediately before the execution of line

7 and (b) immediately before the return statement.

x...

0x07ff0000

0x07ff0010

local 1

src

dst

store8  
offset=3

store8  
offset=2

store8
offset=1

store8  
offset=0

Stack
x

-

-

-

...

-
0x07ff0000

0x07ff0010

local 1

src

dst

Stack

Figure 4.3: Stack memory layout for the program in Listing 4.2. In particular: in (a) we represent the stack before
the execution of function swap, and in (b) the stack after the execution of the function swap.

First, in line 6, we store a 32-bit symbolic integer using the STORE rule, causing four symbolic bytes

to be inserted into the memory segment referenced by src. Each symbolic byte is represented by

the expression extract(x, i + 1, i) with i = 0, . . . , 3. The most significant byte of src corresponds to

extract(x, 4, 3), the second most one to extract(x, 3, 2) and so on and so forth. Then, the code performs

a sequence of four loads followed by stores, essentially copying each byte of src to the segment of

memory referenced by dst in reverse order. For instance, in line 7, the symbolic expression denoting

the first byte of src is pushed onto the top of the stack; then, in line 8, that expression is copied to the

memory cell corresponding to the fourth byte of dst. The same reasoning applies to the second, third,

and fourth bytes of src, which are respectively copied to the segments of memory corresponding to the

third, second, and first bytes of dst. Note that before copying each byte, the program starts by pushing

the addresses of dst and src to the top of stack as they are required by the store and load operations.
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4.3 First Order Solver

The symbolic interpreter of WASP must interact with Z3: (1) to generate new concrete inputs at the end

of each concolic iteration by checking the satisfiability of the global path condition; and (2) to check the

validity of user-supplied assertions by checking the satisfiability of their negation. Every time WASP

needs to check the satisfiability of a given formula, it first converts the formula into a native Z3 formula

and then queries Z3 for the satisfiability of the obtained formula. WASP includes a first order solver

whose job is exactly to encode WASP formulas into the logic of Z3.

Our Z3 encoding models Wasm 32-bit and 64-bit integers respectively as Z3 32-bit and 64-bit bit-

vectors and 32-bit and 64-bit floats as Z3 single-precision and double-precision floats. Importantly, Z3

floats are internally represented as bit-vectors, streamlining the conversion between both types of values.

Wasm binary and unary operators are encoded into equivalent Z3 operators for each type, i.e., binary

operators for integers are encoded as Z3 bit-vector operators and float operators as Z3 floating-point

operators. When no equivalent Z3 operator exists, the operator is mapped to an uninterpreted function.

Let us now consider how WASP encodes its formulas into the logic of Z3. Table 4.1 displays three

representative examples of simple formulas gathered during concolic execution. For each Wasm for-

mula, we specify the Wasm value types of the symbolic inputs, the corresponding type (sort) in the logic

of Z3, and the resulting Z3 formula.

Wasm Types Wasm Formula Z3 Sort Z3 Formula

x, y 7→ i32 y > x x, y 7→ (BitVec 32) (bvsgt y x)

u 7→ i64, v 7→ i32 v = extract(u, 8, 4)
u 7→ (BitVec 64)

v 7→ (BitVec 32)
(= v ((extract 63 32)u)))

z, w 7→ f32 z ≤ w z,w 7→ (Float32) (fp.leq z w)

Table 4.1: Z3 encoding examples.

Once a formula is encoded into Z3 logic, WASP asks Z3 whether or not it is satisfiable. This can

lead to three possible outcomes: (1) Z3 concludes that the formula is satisfiable (SAT), and a model is

returned; (2) Z3 concludes that the formula is unsatisfiable (UNSAT), and no model is returned; (3) Z3

cannot determine the satisfiability of the formula (UNKNOWN), and the execution stops.

Every time a formula is found to be satisfiable, WASP requires the model that witnesses its satisfi-

ability. When checking the validity of a user-supplied assertion, the returned model corresponds to the

concrete counter-model that triggers the assertion failure. When checking the satisfiability of the global

path condition, the returned model corresponds to the logical environment with which to start the next

concolic iteration.

Although Z3 does return models of satisfiable formulas, the models generated by Z3 must then be
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lifted from the logic of Z3 into the logic of WASP. For instance, 32/64-bit bit-vectors must be converted

to Wasm 32/64-bit integers, and single/double precision Z3 floats must be converted to Wasm floats. To

this end, we use a lifting function that essentially creates the values of the appropriate type by parsing

their string representation generated by Z3.

Let us now consider how WASP lifts a model from the logic of Z3 into its logic. Table 4.2 displays

three possible Z3 models for the respective queries presented in Table 4.1. For the first two models, Z3

returns concrete bit-vectors in a hexadecimal representation, which WASP can straightforwardly convert

into integers by parsing their string representation. In the last model, Z3 returns a model of two concrete

IEEE 754 single-precision floating-points as a sequence of three bit-vectors that denote, respectively,

the sign bit (#b1), the exponent (#x98), and the mantissa (#b00000000000000000000000). WASP’s

decoding concatenates the three bit-vectors and parses the resulting bit-string as a Wasm 32-bit float.

Original Formula Z3 Model Wasm Model

y > x
x 7→ #x20000000,

y 7→ #x20000001

x 7→ 536870912,

y 7→ 536870913

v = extract(u, 8, 4)
u 7→ #x0000008000000000,

v 7→ #x00000080

u 7→ 549755813888,

v 7→ 128

z ≤ w z,w 7→ (fp #b1 #x98 #b00000000000000000000000) z, w 7→ −1.86264514923e−09

Table 4.2: Z3 decoding examples.

4.4 Restarts

Programmers often need to test their functions not for all inputs but only for those that satisfy a specific

set of constraints. To do this, programmers declare symbolic input variables and write assumptions that

constrain the values that those variables can denote according to the specification under test. In WASP,

this is achieved with the sym assume instruction, which filters out all execution paths for which the

symbolic inputs do not satisfy the given constraints.

As explained in Section 4.1.1, whenever the symbolic interpreter encounters an assume statement

whose constraint does not hold, it discards the current concolic iteration as it is not relevant for the

developer. This design is, however, inherently inefficient as it requires WASP to restart the concolic

execution of the program every time an assumption fails. To help understand this problem, let us consider

the C program given in Listing 4.3. This program starts with a sequence of n assumptions over its five

symbolic variables. In the worst-case scenario, where every assumption fails, WASP would have to

restart the analysis n times before actually starting executing the program. As a result, WASP would

have to execute O(n2) lines of code and query Z3 n times before reaching the first meaningful concolic

iteration, as illustrated by the execution tree given in Figure 4.4.
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int main() {

int x = symbolic("x");

int y = symbolic("y");

int z = symbolic("z");

int w = symbolic("w");

int u = symbolic("u");

sym_assume(x >= 0); // Asm1

sym_assume(y >= 0); // Asm2

sym_assume(z >= 0); // Asm3

sym_assume(w >= 0); // Asm4

sym_assume(u >= 0); // Asm5

sym_assume(x != y); // ...

sym_assume(x != z);

sym_assume(x != w);

sym_assume(x != u);

sym_assume(y != z);

sym_assume(y != w);

sym_assume(y != u);

sym_assume(z != w);

sym_assume(z != u);

...

sym_assume(w != u); // Asmn

}

Listing 4.3: Chained assumptions that do not affect
the path condition set.

Start Labels

Assume

Passed

Restart

Figure 4.4: Execution tree for the example in Listing 4.3.

To solve this problem, we propose a simple adaptation of the concolic semantics of SYMASSUME

given in Figure 4.2, which avoids the need for restarting the concolic execution whenever a failed as-

sumption is reached. The concolic semantics of the assume instruction is captured by the rules given

and described below.

Optimised SYMASSUME Semantic Rules

SYMASSUME-FAIL

c = 0 (π ∧ ŝ) UNSAT

assume, ((c, ŝ) :: s̃t), π ⇒cs ρ̃, (¬ŝ ∧ π),AsmFail

SYMASSUME-PASS1
c ̸= 0

assume, ((c, ŝ) :: s̃t), π ⇒cs s̃t, (ŝ ∧ π), ·

SYMASSUME-PASS2
c = 0 ε′ = Model(π ∧ ŝ) (ρ̃′, s̃t

′
, δ̃′, µ̃′) = UpdtModel(ε′, (ρ̃, s̃t, δ̃, µ̃))

assume, ρ̃, ((c, ŝ) :: s̃t), ε, π, δ̃, µ̃ ⇒cs ρ̃′, s̃t
′
, ε′, (ŝ ∧ π), δ̃′, µ̃′, ·

SYMASSUME-FAIL This rule is analogous to its previous version given in Figure 4.2. The difference

is that now the current concolic execution is only terminated if there is no model for the conjunction of

the current path condition and the formula being assumed, π ∧ ŝ. In this case, the current execution is

incompatible with the assumed formula, meaning that it must be discarded.

45



1 (func $main

2 ;; initialize x=symbolic(), y=symbolic(),

3 ;; a=4, b=2...

4 (i32.const 0)

5 (i32.gt_s)

6 (if

7 (then

8 (i32.const 6)

9 (local.set $b)

10 (local.get $x)

11 (local.get $y)

12 (i32.lt_s)

13 (if

14 (then

15 (local.get $x)

16 (i32.const 2)

17 (i32.mul)

18 (local.get $y)

19 (i32.add)

20 (local.set $a)))))

21 (local.get $a)

22 (local.get $b)

23 (i32.ne)

24 (sym_assert))

Listing 4.4: Wasm module for the program in
Listing 2.4.

Start

 

 

 

 

 

 

End

Figure 4.5: Concolic execution of Wasm program from list-
ing 4.4. first execution path.

SYMASSUME-PASS1 This rule is identical to its previous version given in Figure 4.2, so we omit the

explanation.

SYMASSUME-PASS2 This rule is the core of our proposed optimisation. It is applied when the current

concrete execution does not satisfy the formula being assumed but the current path condition, π, is

compatible with the assumed formula, ŝ. In this case, WASP queries Z3 for a model for π ∧ ŝ and

uses this model to build a new logical environment, ε′, that satisfies the assumption. Then, WASP has

to update all the concolic domains of the program in order for them to be consistent with the new logical

environment, ε′. To this end, we make use of a dedicated function UpdtModel that receives as input a

logical environment ε′ and a concolic state, generating a new concolic state, obtained by updating the

concrete components of the input state according to the supplied logical environment.

46



4.5 Running Example

To illustrate the concept of concolic execution in WASP, we recall the concolic example in Section 2.2.

Recall that for the example in Listing 2.4 an assertion violation was triggered for the inputs x = 1 and

y = 4. Now we will show how WASP can be used to find this assertion violation and generate an

appropriate counter model. To this end, we now run through the program in Listing 4.4.

The program shown in Listing 4.4 has two symbolic variables and depending on their values will

update variables “a” and “b”. At the end of the program an assertion is made that checks if the two

variables differ. For an assertion violation to occur both variables must be updated, this means that the

then condition of both if-instructions is executed. Figures 4.5 and 4.6 illustrate the step-by-step WASP

execution of the given program, where WASP explores two of the possible execution paths: the else

path of the first if in Figure 4.5, and the path that triggers the assertion violation in Figure 4.6.

Boolean SAT query:

Start

 

 

 

 

 

 

 

 

 

 

Assertion Failure!

Figure 4.6: Concolic execution of Wasm program from
Listing 4.4. Assertion violation path.

Figures 4.5 and 4.6 omit the memory and

global store components of the WASP configura-

tion, as they are not used by the program. We

graphically represent the remaining components

of WASP states using two visual elements: a

stack on the left and a box on the right containing

the executed instruction, the path condition (π),

the logical environment (ϵ), and the local store (ρ̃).

In Figure 4.5, WASP explores the “else” path

of the first if of the program and, using a SMT

solver, determines that the assertion holds and

terminates execution of the current iteration. Next,

WASP negates the set of path conditions com-

puted so far and, using Z3, obtains a model that

will force execution of the “then” branch of the

first if of the program. Figure 4.6 depicts the sec-

ond iteration of the concolic loop, which now ex-

ecutes the “then” branch of the if statement and

updates the variable “b”. Next, since “y” is ini-

tialised with an integer bigger than “x”, it exe-

cutes the “then” branch of the second if state-

ment, updating the variable “a” to 2 × #x + #y.

Lastly, the assert instruction is executed. As part

of its execution WASP queries Z3 for the formula

47



(x > 0) ∧ (x < y) ∧ (2×#x+#y = 6), for which Z3 is able to find the assignment #x = 1 and #y = 4,

leading to an assertion violation.

Although we present two possible execution paths, it may be the case that only one path is executed

in order to prove that the assertion fails. Notice that, since the values assigned to symbolic variables in

the first concolic iteration are random, there is no guarantee which path is going to actually be explored

by WASP.

Summary

This chapter formalises the execution engine at the core of WASP, and explains how it can interact

with its underlying constraint solver and concolic domains. We further describe our symbolic model for

Wasm linear memory, how we encode Wasm formulas into the logic of Z3, and an optimised version

of the semantics for the execution the assume instruction. We finish with an illustrative example how

WASP works in practice.
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This chapter presents WASP-C, a symbolic execution framework to symbolically test C programs us-

ing WASP. We begin by giving an overview of the processes required to take a C program and transform

it into a Wasm module for WASP to analyse (Section 5.1). Then, we explain how we handle system-level

interactions and library calls (Section 5.2). Lastly, we present efficient test-generation techniques for C

programs (Section 5.3).

5.1 Overview and Implementation

WASP-C is a symbolic execution framework that concolically analyses programs written in C. WASP-

C takes as input C programs annotated with assumptions and assertions and outputs a test suite. A

test suite is a list of test cases, each corresponding to a JSON file, mapping the symbolic variables in

the test to their corresponding concrete values. Each test case captures a different execution path of

the program to be analysed. However, since WASP does not directly operate over the C source code,

WASP-C defines three modules whose end goal is to generate a Wasm program for WASP to analyse.

WASP-C is implemented in python and is composed of three essential modules: a C Pre-processor,

a Compilation Module, and a Wasm Post-processor, according to the high-level architecture described

in Figure 5.1.

Let us now take a look at how WASP-C concolically executes C programs using WASP as a submod-

ule. First, the C Pre-processor parses the given program using a standard C parser called pycparser 1,

generating an abstract syntax tree (AST) that is then sent to a specialised C visitor. Our specialised C

visitor traverses the AST, replacing binary operators such as logical ANDs and ORs with specific function

calls. Then the AST is exported back to a C program, which is subsequently compiled into Wasm by the

Compilation Module. Lastly, the Wasm Post-processor processes the obtained Wasm module so as to

inject the appropriate WASP symbolic primitives.

In summary the main modules of WASP-C are the following:

1. C Pre-processor: parses the C program received as input and re-writes logical expressions in order

to minimise the overlap between the generated test cases as explained in Section 5.3. Additionally,

this module handles all IO operations regarding files.

2. Compilation Module: compiles the given C program into Wasm, using the LLVM compilation

pipeline described in Section 2.1.3. As a part of the compilation, this module includes a static

(partial) implementation of Libc consisting of a set of symbolic summaries described in Section 5.2.

3. Wasm Post-processor: processes the obtained Wasm code to replace calls to mock functions

representing the WASP symbolic primitives with their corresponding instructions.

1https://github.com/eliben/pycparser
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Figure 5.1: WASP-C high-level architecture.

1 /* test.c */

2 #include <wasp-c.h>

3 int main() {

4 int a = __WASP_symb_int("a");

5 __WASP_assume(-128 >= a);

6 __WASP_assume(a <= 127);

7 int r = a + 1;

8 __WASP_assert(r > a);

9 }

Listing 5.1: Example of client program using the
WASP-C’s symbolic library presented
in Listing 5.2.

1 /* symbolic values */

2 // I32

3 int __WASP_symb_int(char *);

4 // I64

5 long long __WASP_symb_llong(char *);

6 // F32

7 float __WASP_symb_float(char *);

8 // F64

9 double __WASP_symb_double(char *);

10 /* symbolic variable manipulation */

11 void __WASP_assume(int);

12 void __WASP_assert(int);

13 ...

Listing 5.2: Modelling symbolic programs using
mockup functions defined in the library
wasp.h.

Mock Symbolic Functions for C In order to allow for symbolic testing at the C level, WASP-C exposes

a library of symbolic functions for creating symbolic inputs and reasoning over those inputs. Each of

these functions is associated with a symbolic primitive at the Wasm level—for instance, the function

__WASP_symb_int is associated with the primitive i32.symbolic. Hence, at post-processing time, calls

to these functions are replaced with their corresponding Wasm symbolic instruction–for instance, calls

to __WASP_symb_int are replaced with the instruction i32.symbolic. However, in order for LLVM to

successfully compile the given C program, we have to provide mock implementations for our symbolic

functions. These mock implementations are discarded at the Wasm level.

With our library of symbolic functions, we can create symbolic tests, such as the one given in List-

ing 5.1. This program creates a symbolic variable “a” using the symbolic function __WASP_symb_int,

declares two assumptions over “a” using the symbolic function __WASP_assume, and tests that the vari-

able to be returned satisfies a given constraint using the symbolic function __WASP_assert.
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Listing 5.2 shows a subset of the symbolic functions that WASP-C supports. For instance:

• The functions __WASP_symb_int, __WASP_symb_float, and __WASP_symb_double are respectively

used to create symbolic integers, and 32- and 64-bit floating-point numbers.

• The functions __WASP_assume and __WASP_assert are used to express assumption and assertions

over the symbolic values computed by the program.

Besides the ones shown in the figure, WASP-C offers a variety of other symbolic functions for creating

and manipulating first-order formulas, which mostly coincide with the primitives supported by WASP.

5.2 Runtime models

As mentioned in Section 3.2, a symbolic execution engine must accurately model the side effects of

interactions with the surrounding software stack. For this reason, we modelled system-level interactions

in WASP through symbolic summaries that capture their corresponding side effects. For the C standard

library, we used LibcSummaries, a library of symbolic summaries developed in the context of a parallel

MSc thesis [56]. This library includes symbolic summaries for twenty Libc functions, including string

manipulation functions (e.g., strlen, strcmp, and strcpy), number parsing functions (e.g., atoi), and

Input/Output (IO) functions (e.g., fgets, getchar, puts, and putchar).

The symbolic summaries in LibcSummaries use a symbolic reflection API consisting of a set of

symbolic primitives for explicitly manipulating C symbolic states in a tool-independent way. Hence, in

order for us to use LibcSummaries in the context of WASP-C, we had to extend WASP with support for

the required symbolic primitives.

In order to better understand how symbolic primitives work, let us consider the symbolic summary of

strlen included in LibcSummaries and given in Figure 5.3. This summary makes use of four symbolic

primitives:

• summ_is_symbolic that takes an address of a value with n bytes and returns a boolean indicating

if that value is symbolic or not.

• _solver_NEQ that takes two addresses of values with n bytes and returns the evaluation of the not

equal (̸= ) operator between the two values.

• _solver_is_it_possible that asks the underlying solver if the given formula is satisfiable, return-

ing a boolean with the solver’s answer.

• summ_assume that extends the current path condition with the provided formula and does not return

a value.
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1 int strlen(char* s) {

2 int i = 0;

3 char zero = '\0';

4 while(1) {

5 if(summ_is_symbolic(&s[i], 1)) {

6 if(!_solver_is_it_possible(

7 _solver_NEQ(&s[i], &zero, 1)))

8 break;

9 summ_assume(_solver_NEQ(&s[i], &zero, 1));

10 } else if(s[i] == '\0')

11 break;

12 i++;

13 }

14 return i;

15 }

Listing 5.3: Example of the summary for strlen in
LibcSummaries.

1 #include<wasp.h>

2 #include<libc_summaries.h>

3 int main(void) {

4 /* Nondet inputs */

5 int len;

6 char *str;

7 str = malloc(5);

8 str[4] = '\0';

9 len = strlen(str);

10 __WASP_assert(len == 4);

11 return 0;

12 }

Listing 5.4: Example of strlen applied to a non-
deterministic string null terminated.

The strlen summary receives as input a character array possibly containing symbolic characters

and returns a symbolic expression denoting the length of the character array; that is, the number of

characters until the null character '\0'. To this end, this summary traverses the array, checking at

each index whether or not it contains a concrete '\0'. If that is the case, the summary returns the

current index i. If the character at the current index is symbolic, the summary must reason about its

possible concrete values. If the symbolic character must denote the concrete null character (e.g. it is not

possible that it is different from the null character), the summary returns the current index. If not, then

the summary assumes that the current character is different from the null character and proceeds to the

next character. Note that this summary is not sound in that it does not model all the possible concrete

paths of the real strlen function. However, it is precise; that is, all the paths modelled by the summary

correspond to concrete paths of the real strlen function.

Let us now take a look at how we can use the summary of strlen to reason about programs that call

strlen. Figure 5.4 shows a simple C program that allocates a string in the heap and uses the strlen

summary to compute its length. First, the program allocates an array on the heap with space for five

characters. Then, the program sets the last byte of the array to '\0'. Next, it calls the strlen summary

on the created array. Note that, in WASP, the malloc function returns a pointer to a segment of memory

initialised with arbitrary symbolic bytes (which might denote the character '\0'). Nevertheless, the call

to the strlen summary will return the concrete value four, since that summary counts the number of

elements of the given array until a concrete '\0' is found. Consequently, this summary is not sound

as it does not consider the case in which the allocated array contains intermediate elements equal to

'\0'. But, it is precise, as it constrains the current symbolic state, assuming that all the characters in

intermediate positions are different from '\0'.
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Symbolic reflection primitives To accurately model the side effects of the C standard library, WASP

has to implement the symbolic reflection primitives of LibcSummaries. These primitives are implemented

as mock functions at the C level, and once the C code is compiled down to Wasm, those mock func-

tions are replaced with WASP native symbolic primitives. Hence, we had to extend WASP with native

implementations of all the symbolic reflection primitives required by LibSummaries. The following table

presents the concolic semantics of two representative symbolic reflection primitives: summ_is_symbolic

and _solver_NEQ.

Symbolic Reflection Primitives Semantic Rules

ISSYMBOLIC

(c′, ŝ′) = load bytes(µ̃, c, n) c′ = ŝ′

summ is symbolic, ρ̃, ((n, ) :: (c, ) :: s̃t), ε, π ⇒cs ρ̃, ((0, 0) :: s̃t), ε, π, ·

ISSYMBOLIC

(c′, ŝ′) = load bytes(µ̃, c, n) c′ ̸= ŝ′

summ is symbolic, ρ̃, ((n, ) :: (c, ) :: s̃t), ε, π ⇒cs ρ̃, ((1, 1) :: s̃t), ε, π, ·

NEQ-FALSE

(c′1, ŝ
′
1) = load bytes(µ̃, c1, n) (c′2, ŝ

′
2) = load bytes(µ̃, c2, n) c′1 = c′2

solver NEQ, ρ̃, (c2, ŝ2) :: (c1, ŝ1) :: (n, ŝ3) :: s̃t, ε, π ⇒cs ρ̃, (0, ŝ′1 ̸= ŝ′2) :: s̃t, ε
′, π, ·

NEQ-TRUE

(c′1, ŝ
′
1) = load bytes(µ̃, c1, n) (c′2, ŝ

′
2) = load bytes(µ̃, c2, n) c′1 ̸= c′2

solver NEQ, ρ̃, (c2, ŝ2) :: (c1, ŝ1) :: (n, ŝ3) :: s̃t, ε, π ⇒cs ρ̃, (1, ŝ′1 ̸= ŝ′2) :: s̃t, ε
′, π, ·

ISSYMBOLIC The ISSYMBOLIC rule takes an address c and the number n of bytes from the top of the

stack. Then, the concolic interpreter loads a concrete pair (c′, ŝ′) with n bytes from the symbolic memory

at the provided address c. Finally, the rule checks if the concrete pair coincides with its symbolic element,

in which case the summ_is_symbolic primitive returns false; otherwise, it returns true.

NEQ The NEQ rules pops three concolic pairs (c2, ŝ2), (c1, ŝ1), and (n, ŝ3) out of the stack and loads

the concolic pairs stored in the addresses c1 and c2 of the linear memory. Then the rule simply checks

whether or not the two concrete loaded values coincide. If they do, the rule pushes the concolic pair

(1, ŝ′1 ̸= ŝ′2) onto the top of the stack. If not, the rule pushes the concolic pair (0, ŝ′1 ̸= ŝ′2) onto the top of

the stack.

5.3 Efficient Test Suite Generation

Test suite generation is the primary output of WASP-C. WASP-C generates a test case for every exe-

cution path explored by WASP using the final logical environment of each concolic iteration. Recall that
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1 void test(int a, int b) {

2 if (a && b) {

3 return 1;

4 } else {

5 return 0;

6 }

7 }

Listing 5.5: Simple C program with a logical AND
inside an if-statement.

1 (func $test (param $a i32) (param $b i32)

2 (local $ret i32)

3 block

4 block

5 local.get $a

6 i32.eqz

7 br_if 1 ;; a == 0?

8 local.get $b

9 i32.eqz

10 br_if 1 ;; b == 0?

11 i32.const 1

12 local.set $ret

13 br 0

14 end

15 i32.const 0

16 local.set $ret

17 br 0

18 end

19 local.get $ret)

Listing 5.6: Wasm code from Listing 5.5.

the obtained logical environments model paths of the input program; therefore, since WASP explores all

execution paths up to a given pre-established depth, WASP-C can generate test suites with very high

code coverage, provided that it is given enough resources. However, the semantics of C short-circuit

evaluation makes it possible for WASP to generate multiple logical environments that actually explore

the same execution paths. Here, we propose a methodology for preventing the repeated exploration of

the same execution paths, minimising the overlap between the generated test cases and enhancing the

tool’s overall performance.

Problem To understand how the short-circuit evaluation of C logical operators may result in the re-

peated execution of the same program paths and, consequently, on the generation of overlapping test

cases, let us consider the C program given in Listing 5.5 and the result of its compilation to Wasm given

in Listing 5.6. The original C program branches on the result of a logical AND operation between two in-

teger variables. The semantics of short-circuit evaluation mandates that the compilation of this program

to Wasm first checks if “a” is equal to zero, in which case the “else” branch is immediately executed.

Then, it must check if “b” is equal to zero, in which case the “else” branch is also executed. If neither

“a” nor “b” is equal to zero, the “then” branch is executed. Accordingly, the Wasm program given in

Listing 5.6 has two if instructions with the first one (line 7) checking if “a” is equal to zero and the second

one (line 10) checking if “b” is equal to 0.

The concolic executing of the Wasm program resulting from the compilation of the C program will

generate three concolic iterations:

1. During the first concolic iteration, the concrete values associated with the symbolic variables of the
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program are picked randomly. Let us consider, for the purposes of this example, that a = 0 and

b = 0. These inputs cause the program to break out of the innermost block in line 7, resuming

execution in line 15 (equivalent to executing the “else” branch in the C code) and generating the

final path condition a = 0.

2. Before the second concolic iteration, WASP-C queries the underlying constraint solver for the

symbolic inputs that satisfy the global path condition (Π ≡ (a ̸= 0)). Let us assume that the solver

returns the model a = 1 and b = 0. These inputs cause again cause the program to break out of

the innermost block in line 10, resuming execution on line 15 (equivalent to executing the “else”

branch in the C code) and generating the final path condition a ̸= 0 ∧ b = 0.

3. Lastly, before the third concolic iteration, WASP-C queries the underlying constraint solver for the

symbolic inputs that satisfy the global path condition (Π ≡ ((a ̸= 0) ∧ ¬((a ̸= 0) ∧ (b = 0)) ≡ (a ̸=

0) ∧ (b ̸= 0)). Any such inputs cause the program to execute the innermost block to completion

(equivalent to executing the “then” branch in the C code).

Even though the first two concolic iterations explore different paths of the resulting Wasm program,

they explore the same path of the original C program. Consequently, WASP-C generates three test

cases to obtain 100% code coverage when it only needed two. This problem gets exacerbated when

considering sequences of conditional statements, each branching on logical expressions with short-

circuit evaluation.

Solution To solve this problem, we perform a pre-processing step right before we compile an anno-

tated C program. This step consists of replacing all AND (&&) and OR (||) logical operators with function

calls to __logand and __logor, respectively.

To illustrate how the proposed solution helps us avoid the exploration of repeated paths, let us con-

sider the C program given in Listing 5.8, resulting from the application of our pre-processing step to

the C program given in Listing 5.5. In the following, we explain the concolic iterations generated by the

concolic execution of the Wasm program given in Listing 5.8, which results from the compilation of the

pre-processed C program to Wasm.

There are still two possible execution paths. However, contrary to the program given in Listing 5.6,

with the proposed solution, there will only be two concolic executions (instead of the three previously

observed). WASP executes the given program as follows:

1. During the first concolic iteration, the concrete values associated with the symbolic variables of the

program are picked randomly. For this example we consider that a = 0 and b = 0. These inputs

cause WASP to explore the “else” branch of the “if” instruction, generating the final path condition

a = 0 ∨ b = 0.

57



1 void test(int a, int b) {

2 if (__logand(a, b)) {

3 return 1;

4 } else {

5 return 0;

6 }

7 }

Listing 5.7: Using functions calls instead of short-
circuit evaluation.

1 (func $test (param $a i32)

2 (param $b i32)

3 local.get $a

4 local.get $b

5 call $__logand

6 (if (result i32)

7 (then

8 i32.const 1)

9 (else

10 i32.const 0)))

Listing 5.8: Wasm code from Listing 5.7.

 

(a) Original program in Listing 5.5.

  

(b) Simplified program in Listing 5.7.

πoriginal ⇒ πsimplified

Figure 5.2: Evaluation trees for the original and simplified programs.

2. Before the second concolic iteration, WASP-C queries the underlying constraint solver for the

symbolic inputs that satisfy the global path condition (Π ≡ ¬(a = 0 ∨ b = 0) ≡ (a ̸= 0 ∧ b ̸= 0)). Let

us assume that the solver return the model a = 1 and b = 2. These inputs cause WASP to explore

the “then” branch of the “if” instruction, generating the final path condition a ̸= 0 ∧ b ̸= 0.

Lastly, before the third concolic iteration, WASP queries the underlying constraint solver for the sym-

bolic inputs that satisfy the global path condition (Π = ((a ̸= 0 ∧ b ̸= 0) ∧ ¬(a ̸= 0 ∧ b ̸= 0)). Since the

condition is unsatisfiable, WASP terminates.

In conclusion, the advantage of modelling the AND logical operator as a function call is that when

we reach the if statement, we have the full symbolic expression that models the condition. As a result,

in the subsequent iterations, WASP can generate logical environments to explore other paths more

accurately.
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Summary

This chapter introduced WASP-C, a symbolic execution framework we developed to test C programs

using WASP. We began with an overview of how to model symbolic programs, followed by the steps

required to analyse a C program in WASP-C. Then, we explained how WASP-C models runtime interac-

tions and library calls. Lastly, we presented a strategy to improve test suite generation in WASP-C. The

following chapter evaluates the artefact produced until now.
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In this chapter, we evaluate the built concolic execution engine to confirm that it is both scalable

and able to identify execution errors in actual Wasm modules. We evaluate WASP with respect to

three research questions: (RQ1) Can WASP-C be used to detect bugs in C data structure libraries?

(RQ2) How does WASP-C support different types of symbolic reasoning? (RQ3) Can WASP-C scale

to industry-grade code? Next, we explore each of these research questions and provide our findings in

independent sections.

6.1 RQ1: Can WASP-C be used to detect bugs in C data structure

libraries?

To investigate whether WASP-C can detect bugs in complex C data structure libraries, we used our tool

to symbolically test Collections-C 1, a generic data structure library obtained from Github, which includes

a variety of data structures, such as arrays, lists, ring buffers, and queues. In total, it implements ten

different data structures spanning just over 11k lines of code (LOC). Next, we present the symbolic test

suite we use to evaluate WASP-C on Collections-C (Section 6.1.1) and describe our experimental set-up

(Section 6.1.2). Lastly, in Section 6.1.3, we present the results of our experiments.

6.1.1 Benchmark suite

The symbolic test suite we used to evaluate WASP on Collections-C came from the Gillian project [15].

In particular, the authors of Gillian use Gillian-C, their symbolic execution tool for C, to symbolically

test Collections-C. To this end, the authors developed a symbolic test suite2 that they run against the

implementation of Collections-C. This symbolic test suite consists of symbolic test program targeting the

various data structure algorithms included in Collections-C. Specifically, this symbolic test suite contains

161 symbolic tests.

We test two different versions of Collections-C, a version with bugs previously found by the authors

of Gillian-C3, henceforth buggy version, and the version resulting from the correction of those two bugs4,

henceforth corrected version. Essentially, we use WASP-C to execute 161 symbolic test programs

developed in the context of the evaluation of the Gillian-C project both against the buggy and corrected

version of Collections-C.

Running program analysis on this symbolic test suite allows us to examine and compare the precision

and other key performance metrics of our tool. These metrics include total execution time, which is the

1https://github.com/srdja/Collections-C
2https://github.com/GillianPlatform/collections-c-for-gillian
3https://github.com/srdja/Collections-C/pull/119 and https://github.com/srdja/Collections-C/pull/123
4https://github.com/srdja/Collections-C
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time it takes to analyse a test, concolic loop execution time representing the time spent running the

concolic interpreter and solver execution time which gives us the time spent in the constraint solver.

6.1.2 Experimental setup

Benchmark preparation The symbolic test suite already comes annotated with symbolic inputs and

assume/assert declarations. However, because the symbolic test suite was designed to be analysed in

Gillian-C, the annotations use a syntax not supported in WASP-C. For this reason, these annotations

had to be adapted into the functions that we use to symbolically test C programs. For instance, the

declaration of symbolic integers must be re-written as follows:

int a = __builtin_annot_intval("symb_int", a);

⇓

int a = __WASP_symb_int("a");

This transformation is trivial and is achieved by explicit manipulation of the program text using regular ex-

pressions. The remaining Gillian-C symbolic operators are analogously mapped to WASP-C equivalent

ones.

Experimental procedure We performed two experiments:

• Experiment one: We use Gillian-C and WASP-C to execute the symbolic test suite on the corrected

version of Collections-C.

• Experimento two: We use Gillian-C and WASP-C to execute the two error triggering symbolic tests

on the buggy version of Collections-C.

The experiments were conducted on a server with a 12-core Intel Xeon E5–2620 CPU and 32GB

of RAM running Ubuntu 20.04.2 LTS. For the constraint solver, we employed Z3 v4.8.1. For compiling

our benchmarks, we used clang v10.0.0 as part of the LLVM compiler toolchain kit v10.0.0, which in-

cludes: opt, the LLVM optimiser and analyser; llc, the LLVM static compiler; and wasm-ld, the Wasm

version of lld, which is the LLVM object linker. For each execution of WASP, we use the flag -u which

disables WASP’s type checker and the flag -m 10_000_000 which limits concolic execution to 10M Wasm

instructions. Note that we can only disable WASP’s type checker because compilation assures that the

instructions are well-typed. Additionally, as a safeguard measure, we set a timeout of twenty seconds,

seeing that WASP may get stuck in Z3 during constraint solving.
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GILLIAN-C WASP-C

Category ni TGil (s) TWASP (s) Tloop (s) Tsolver (s) avg paths S

(
TGil

TWASP

)
Slist 37 8.34 9.06 6.21 0.85 2 0.92

Pqueue 2 4.79 0.34 0.19 0.05 1 14.09
Stack 2 1.55 0.21 0.06 0.00 1 7.38
Deque 34 8.08 6.43 3.89 1.03 2 1.25
Array 21 7.00 7.00 5.41 1.44 5 1.00

Queue 4 2.11 1.99 1.69 0.18 4 1.06
RingBuffer 3 1.43 0.31 0.07 0.00 1 4.62

Treeset 6 7.07 4.89 4.43 1.43 7 1.45
Treetable 13 12.07 5.02 4.04 1.61 5 2.40

List 37 21.77 30.01 27.18 11.65 6 0.73

Total 159 74.21 65.26 53.17 18.24 34 1.14

Table 6.1: Results for Gillian-C and WASP-C applied to Gillian-C corrected version of Collections-C.

6.1.3 Results

Table 6.1 presents the results of experiment one, where we use both Gillian-C and WASP-C to test the

corrected version of Collections-C. We present the obtained results for each data structure included in

Collections-C, showing for each of them: the number of tests (ni), the total execution time for Gillian-C

(TGil), the total analysis time for WASP (TWASP ), the total time spent in the concolic interpreter (Tloop),

the total time in the constraint solver (Tsolver), the average number of paths explored (avg paths), and

the speedup between TGil and TWASP (S). Note that the concolic interpreter queries the solver at the

end of each iteration, meaning Tsolver is already accounted in Tloop. The same is true for Tloop regarding

TWASP . To help illustrate how Tloop, Tsolver, and TWASP relate to one another. We express these

relations arithmetically:

TWASP = Tloop + Tparse (6.1)

Tloop = Tsolver + Tinterpretation (6.2)

In the formulas above, Tparse represents the total time needed to parse the benchmarks and

Tinterpretation the total time spent interpreting Wasm instructions.

From Table 6.1 we observe that, overall, WASP is 1.14× faster than Gillian-C at analysing the com-

plete benchmark suite. In 7 out the 10 categories, WASP completes the program analysis faster than

Gillian-C (i.e., TWASP < TGil). For Stack and RingBuffer categories, WASP spends a negligible amount

of time in the solver (Tsolver ≈ 0.00), being able to complete the analysis in a single concolic iteration.

Two reasons explain this fact. First, the data structures are simple, i.e., the order of the stored values

does not depend on the symbolic variables it contains. For example, a Stack only pushes and pops

symbolic values from an array, and a RingBuffer reads and writes symbolic values to an array while
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Test Vulnerability tGil (s) tWASP (s) tloop (s) tsolver (s) npaths S

array_test_remove Found 1.40 0.20 0.08 0.03 1 7.00
list_test_zipIterAdd Found 0.57 0.40 0.18 0.00 1 1.42

Total 2/2 1.97 0.60 0.26 0.03 2 3.28

Table 6.2: Bug-finding statistics for Collections-C bugs by WASP and Gillian-C.

updating concrete index values. As a result, the concolic interpreter does not add constraints to the

path condition set. Second, the test assertions are trivial. For example, when we want to check the

consistency of values in a stack, we pop a symbolic value off the stack and compare it with the symbolic

input originally inserted onto the stack, generating formulas like x = x or y ̸= y, which WASP can easily

solve without the help of a solver.

Table 6.2 presents the results of experiment two, where we use Gillian-C and WASP-C to test the

two bug-triggering tests for the buggy version of Collections-C. Since there were only two tests, each

triggering a different bug, each row in the table represents a different bug. For each bug, we indicate

whether or not WASP found the bug, the number of concolic iterations(npaths), the time spent in the

concolic loop (tloop), the time spent in the solver (tsolver), analysis time for WASP (tWASP ), the analysis

time for Gillian-C (tGil), and the speedup between TGil and TWASP (S). The results demonstrate that

that WASP outperforms Gillian-C, being able to complete analysis 3.28× faster. We believe that this

performance gain is naturally due to WASP’s analysis, i.e., Gillian-C performs static symbolic execution

while WASP performs concolic execution, which is faster since it requires fewer interactions with the

underlying solver. Additionally, our second experiment demonstrates that WASP can find the two known

bugs previously found by Gillian-C, a state-of-the-art symbolic execution tool for C.

New Bug Found: Besides the two known bugs found by Gillian-C, WASP-C additionally found a

new heap overflow bug in the Pqueue category. We confirmed the bug with a concrete test using

AddressSanitizer [57]. In order to explain the discovered bug, let us consider the code of pqueue_push

given in Listing 6.1. This function inserts the element elem into the priority queue pq. A Collections-C

priority queue corresponds to the standard max-heap data structure [58]. Essentially, the pqueue_push

function traverses the array in order to find the index at which the given element is to be inserted. At the

end of each iteration, the variable i is set to the index of the current parent and the variable parent to

the value of the parent of the parent. The index of the parent of the node stored at index i is given by the

expression (i − 1)/2. Hence, if one starts the body of the loop with i equal to 1, one will finish the loop

with i = 0 (0 = (1 − 1)/2). The problem occurs when computing the new value of the variable parent,

which would be in the index (0− 1)/2. However, since i is declared to be of type size_t (unsigned int),

the evaluation of (0 − 1)/2 will trigger an integer overflow, and subsequently lead to a heap overflow in

line 12. Even though this bug is harmless, it results in unspecified behaviour, potentially causing porta-
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1 #define CC_PARENT(x) (x - 1) / 2

2 enum cc_stat pqueue_push(PQueue *pq, void *elem)

3 {

4 size_t i = pq->size;

5 ...

6 while ((i != 0) && pq->cmp(child, parent) > 0) {

7 void *tmp = pq->buffer[i];

8 pq->buffer[i] = pq->buffer[CC_PARENT(i)];

9 pq->buffer[CC_PARENT(i)] = tmp;

10

11 i = CC_PARENT(i); child = pq->buffer[i];

12 parent = pq->buffer[CC_PARENT(i)];

13 }

14 return CC_OK;

15 }

Listing 6.1: Off-bounds read in the heap by pqueue push.

bility problems. A possible fix would be to add an explicit check for 0 to the macro on line 1. Replacing

the current statement for: #define CC_PARENT(i) ((i > 0) ? (i-1)/2 : 0)5.

6.2 RQ2: How does WASP-C support different types of symbolic

reasoning?

To investigate our second research question, i.e., how does WASP-C support different types of symbolic

reasoning, we test WASP-C against the Test-Comp benchmark suite (Test-Comp) [16] and compare its

results against those obtained from the testing tools submitted to the 2021 Test-Comp [2]. We first

give an overview of the Test-Comp benchmark (Section 6.2.1); then, in Section 6.2.2 we present the

experimental set-up required for running WASP-C on the benchmarks of Test-Comp; and finally, in

Section 6.2.3 we present the obtained results. The results obtained for WASP-C are comparable to those

obtained for well-established symbolic execution testing tools for C, such as KLEE [9] and VeriFuzz [17],

demonstrating the maturity of our tool.

6.2.1 Benchmark suite

Test-Comp consists of a collection of programs generated from the C benchmarks used in the “3rd

edition of the Competition on Software Testing” (Test-Comp) [2]. Test-Comp utilises benchmarks from

sv-benchmarks a publicly available benchmark suite of software-verification tasks6, covering correct and

buggy examples. Hence, one can regard Test-Comp as a well-accepted data set for evaluating testing

tools for C programs. The benchmarks included in Test-Comp are organised into various categories, with
5Bug fix for heap-overflow bug: https://github.com/srdja/Collections-C/pull/148
6https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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Figure 6.1: Flow of the Test-Comp execution for one tester (taken from [2]).

each category targeting a specific type of symbolic reasoning; for instance, the category Arrays aims at

reasoning about the treatment of arrays, the category BitVectors aims at reasoning about bit-operations,

and the category Loops aims at testing the analysis of loops and recursion.

Test-Comp defines two types of testing tasks: (1) Cover-Branches tasks, whose goal is to generate

a set of concrete tests that cover the greatest possible number of program branches and (2) Cover-Error

tasks, whose goal is to generate at least one set of inputs that lead the execution of the given program

to an execution error.

Test-Comp defines a scoring system to classify testing tools depending on how they perform on both

types of tasks. Essentially, a tool is assigned three scores, one for each type of task and a global score.

Below, we provide further details on the scoring system.

6.2.2 Experimental setup

In order to test WASP-C against the Test-Comp benchmarks, we developed two testing pipelines, one

for Cover-Branches tasks and another for Cover-Error tasks. We illustrate these in Figure 6.1. Both

testing pipelines receive as input the program to be analysed and use WASP-C to concolically execute

it. The difference lies in how the generated output is processed. For Cover-Branches, the testing pipeline

feeds all generated test cases to the Test-Comp test validator in branch coverage mode, which outputs

the coverage statistics obtained by the test suite. For Cover-Error, the testing pipeline feeds the single

bug-triggering test case to the Test-Comp test validator in bug-finding mode, which will check for call

coverage of the bug-triggering function to be different from zero.

We separately evaluate WASP-C on the Cover-Branches and Cover-Error tasks. For each task, we

assign WASP-C a global score. For Cover-Branches, the assigned score represents the coverage of

the generated test suites. For Cover-Error, the assigned score represents the number of bugs found.

Table 6.3 summarises the scoring scheme for each type of task. In Cover-Branches, each generated
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Points Description

Cover-Branches

+cov points for a generated test suite that yields coverage cov and time is less than
the time limit

0 points otherwise
Cover-Error

+1 point for a generated test suite that contains a test witnessing the specification
violation and time is less than the time limit

0 points otherwise

Table 6.3: Test-Comp scoring scheme, taken from [2].

test suite is given a coverage score cov ∈ [0, 1], while in Cover-Error, a test case is given a score of 1 if

it triggers the bug and scores 0 otherwise.

For both tasks, results are presented for each testing category (e.g. Arrays, BitVectors, ControlFLow,

and so on.). For each category, we assign a unique integer between 1 and 12. We obtain the global score

for all analysed categories by applying a weighted average on the individual scores of each category

according to the formula:

S =
(∑k

i=1
sci
ni

)
× N

k (6.3)

Where: N is the total number of analysed programs, k is the number of categories, ni is the number of

programs in the category i, and sci is the score obtained for category i.

The experimental test bed used to run the two experiments on the Test-Comp benchmark suite was

the same test bed used for the evaluation of RQ1 (6.1.2). For the test validator, we adopted TestCov [59]

v3.4-dev. For each instantiation of WASP, we use the flag -u which disables the WASP type checker.

Furthermore, we ran WASP with a timeout of 15 minutes and a 15GiB memory limit to closely replicate

the resource constraints imposed during the Test-Comp competition.

6.2.3 Results

Table 6.4 and Table 6.5 presents WASP-C’s evaluation results per category for the Cover-Branches

and Cover-Error tasks, respectively. In both tables, we compare the results obtained for WASP-C with

the tools submitted to Test-Comp 2021: FuSeBMC, CMA-ES Fuzz, CoVeriTest, HybridTiger, KLEE,

Legion, LibKluzzer, PRTest, Symbiotic, TracerX, and VeriFuzz. In particular, we show the minimum

and maximum recorded scores, the scores corresponding to the first, second and third quartiles of the

evaluated tools, and the score and rank obtained by WASP-C. For Cover-Branches and Cover-Error,

WASP-C ranked sixth and third, demonstrating that WASP-C’s symbolic reasoning is on par with state-

of-the-art symbolic execution and testing tools for C. Note that in Table 6.5 there are no results for the

categories C11 and C12 because these categories have no Cover-Error tasks. Additionally, we can see
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Category Min Q1 Q2 Q3 Max WASP-C Rank
C1.Arrays 96.0 167.0 225.0 256.5 296/400 245/380 4th

C2.BitVectos 13.0 27.5 37.0 37.5 40/62 35/57 7th
C3.ControFlow 3.0 6.5 15.0 16.0 18/67 33/54 1st

C4.ECA 0.0 2.5 6.0 8.5 12/29 4/27 8th
C5.Floats 16.0 49.0 64.0 94.0 103/226 78/202 7th
C6.Heap 19.0 71.5 81.0 86.0 90/143 80/136 7th
C7.Loops 152.0 272.5 383.0 407.0 424/581 403/572 4th

C8.Recursive 9.0 19.5 31.0 35.5 38/53 27/51 8th
C9.Sequentialized 0.0 17.0 39.0 58.0 71/82 25/39 9th

C10.XCSP 0.0 74.0 80.0 84.5 97/119 56/100 10th
C11.Combinations 0.0 11.5 31.0 117.0 180/210 28/210 7th

C12.MainHeap 51.0 152.0 185.0 196.0 204/231 175/226 8th

Score 411.0 717.5 1087.0 1165.0 1389 1090 6th

Table 6.4: Results for the meta category Coverage-Branches.

Category Min Q1 Q2 Q3 Max WASP-C Rank
C1.Arrays 0 63.0 73.0 90.5 96/100 89/100 4th

C2.BitVectors 0 5.5 8.0 9.0 10/10 7/10 2th
C3.ControlFlow 0 3.5 8.0 9.0 11/32 29/32 1st

C4.ECA 0 0.5 2.0 12.5 16/18 7/18 6th
C5.Floats 0 0.0 6.0 26.0 32/33 21/32 5th
C6.Heap 0 23.0 44.0 46.5 47/57 41/55 7th
C7.Loops 0 44.0 82.0 116.5 138/158 127/156 4th

C8.Recursive 0 0.5 13.0 16.5 19/20 9/20 7th
C9.Sequentialized 0 28.5 79.0 89.5 101/107 75/107 9th

C10.XCSP 0 1.5 31.0 43.5 53/59 54/59 1st
C11.Combinations – – – – – – –

C12.MainHeap – – – – – – –

Score 0 152.0 266.0 349.0 405 360 3rd

Table 6.5: Scores for each sub-category in the Cover-Error category.

that WASP-C ranked fourth when comparing our tool against the 11 test-generation tools evaluated in

Test-Comp 2021.

To help visualise the results from Table 6.4 and Table 6.5 we create Figures 6.2(a) and 6.2(b) that

plot the results for Cover-Branches and Cover-Error, respectively, by normalising the scores of all tools

in each category. We highlight WASP-C’s score with a red dot.

In the Cover-Branches tasks (see Figure 6.2(a)), WASP-C outperforms the other tools for ControlFlow

(C3) and performs above average for C1, C5 and C7. In contrast, for XCSP (C10), WASP-C performs

worse than other tools due to a combination of three factors: (1) the XCSP programs are exclusively

made of sequences of assumptions; (2) WASP-C only generates satisfying assignments for assumes;

and (3) the assume function in Test-Comp is implemented as an if-statement. Meaning that because

(2) and (3) WASP only generates test cases that explore the “then” branch of the assume function,
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Figure 6.2: Box plots

COVER-ERROR COVER-BRANCHES OVERALL
Rank Tester Score CPU Rank Score CPU Rank Score CPU Rank

1 VERIFUZZ 385 2.6 2 1,389 630 1 1,865 640 1
2 FUSEBMC 405 22 1 1,161 390 4 1,776 410 2
3 LIBKLUZZER 359 90 4 1,292 520 2 1,738 610 3
4 WASP-C 360 26 3 1,090 310 6 1,585 330 4
5 SYMBIOTIC 314 5 6 1,169 440 3 1,543 450 5
6 KLEE 339 3 5 784 210 9 1,370 220 6

Table 6.6: CPU execution time in hours for the top-6 overall ranked testers.

consequently, because of (1) WASP-C can only ever achieve 50% coverage of the entire XCSP category.

In the Cover-Error tasks (see Figure 6.2(b)), WASP-C establishes a new maximum score for Con-

trolFlow (C3) and XCSP (C10) and performs above average for C1, C4 and C7. Contrary to Cover-

Branches, in Cover-Error, the fact that WASP can only generate satisfying assignments for assume

statements helps WASP-C achieve first place in XCSP. Consider the fact that XCSP programs are se-

quences of assumptions and that to find the assertion violation, one must find the path that satisfies all

assumptions. Then, because WASP only generates satisfying assignments for the assume statement,

WASP quickly progresses through the sequence of assumptions and finds the assertion violation.

Comparing the CPU time over the top-6 ranked tools, Table 6.6 shows that, for Cover-Error, WASP-C

was the fifth fastest with a total time of 26 hours. For Cover-Branches, WASP-C was the second-

fastest tool with a total of 310 hours, being only beaten by KLEE, which completed analyses in 210

hours. Overall, WASP-C is the second-fastest tool in the top-6, finishing analyses in about 326 hours

and placing fourth (note that KLEE placed sixth). Furthermore, it is essential to mention that the tools

we compare WASP-C against were executed on a far superior test bed. Test-Comp’s test bed is a
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compute cluster consisting of 168 machines; each test-generation run was executed on an otherwise

wholly unloaded, dedicated machine to achieve precise measurements. Each machine had one Intel

Xeon E3-1230 v5 CPU, with eight processing units each, a frequency of 3.4GHz and 33GB of RAM.

Compared to our server with a Intel Xeon E5–2620 CPU, a frequency of 2.5GHz and 32GB of RAM, and

where we executed twelve test-generation runs concurrently.

6.3 RQ3: Can WASP-C scale to industry-grade code?

To investigate our third research question, i.e., how does WASP-C scale to industry-grade code? We

use WASP-C to obtain a comprehensive test suite for part of the C implementation of the AWS Amazon

Encryption SDK7. We begin by characterising the subset of the library tested by WASP-C (Section 6.3.1),

then we explain the experimental setup (Section 6.3.2) and finally present the results of our experiments

(Section 6.3.3).

6.3.1 Benchmark suite

The Amazon Web Services (AWS) Encryption Software Development Kit (SDK) for C is a library for the

encryption and decryption of data using standards and best practices. For instance, it uses OpenSSL8

a general-purpose cryptography toolkit used for secure communications.

The AWS Encryption SDK for C is an extensive client-side library that implements complex data

structures in the C language. In particular, this library is difficult to analyse as it implements various cryp-

tographic functions that current SMT solvers cannot tackle. This library comes with a benchmark suite of

static bounded verification proofs designed to be checked with the CBMC bounded model checker [60].

These proofs can be easily turned into symbolic tests, which WASP-C can leverage to generate a con-

crete test suite for the library. We consider 94 verification proofs totalling 6k LOC. The library itself

contains multiple C files totalling just under 40k LOC. The Amazon DynamoDB Encryption Client9 uses

this library to encrypt its client’s sensitive table data.

6.3.2 Experimental setup

Each verification proof corresponds to a file containing a C program annotated with non-deterministic

data structures and assumptions. For instance, Listing 6.2 presents a fragment of the bounded verifica-

tion proof for the cmm_base_init operation over the cmm structure. Before applying WASP-C, we have

to convert the verification proof into a symbolic test replacing CBMC bounded verification primitives

7https://github.com/aws/aws-encryption-sdk-c
8https://www.openssl.org/
9https://docs.aws.amazon.com/crypto/latest/userguide/awscryp-service-ddb-client.html

72

https://github.com/aws/aws-encryption-sdk-c
https://www.openssl.org/
https://docs.aws.amazon.com/crypto/latest/userguide/awscryp-service-ddb-client.html


1 #include <aws/cryptosdk/materials.h>

2

3 void aws_cryptosdk_cmm_base_init_harness() {

4 /* Nondet input */

5 struct aws_cryptosdk_cmm cmm;

6 struct aws_cryptosdk_cmm_vt *vtable =

7 malloc(sizeof(struct aws_crypto_cmm_vt));

8

9 /* Assumptions */

10 __CPROVER_assume(aws_cryptosdk_cmm_vtable_is_valid(vtable));

11

12 /* Operation under verification */

13 aws_cryptosdk_cmm_base_init(&cmm, vtable);

14

15 /* Post-conditions */

16 assert(aws_cryptosdk_cmm_base_is_valid(&cmm));

17 }

Listing 6.2: Bounded verification proof for the cmm_base_init operation over the cmm structure.

1 void ensure_nondet_allocate_cmm_vtable_members(

2 struct aws_cryptosdk_cmm_vt *vtable, size_t max_len) {

3 if (vtable) {

4 vtable->vt_size = __WASP_symb_int("vt_size");

5 vtable->name = malloc(sizeof(char) * max_len);

6 for (int i = 0; i < max_len; ++i)

7 vtable->name[i] = __WASP_symb_char();

8 }

9 }

Listing 6.3: Initialisation of the cmm_vt structure using WASP-C’s primitives

with WASP-C’s primitives and explicitly associating each function parameter with a symbolic variable of

the appropriate type. For instance, the CBMC’s annotation for assumptions __CPROVER_assume(expr)

is replaced with __WASP_assume(expr). This transformation enables the compilation of the verification

proofs.

While parameters of primitive types can be straightforwardly converted to WASP’s symbolic inputs,

non-primitive parameter types require a more complex approach. In particular, we allocate symbolic

structs and arrays into the heap and initialise their components with symbolic values of the appropriate

type. For instance, in Listing 6.3 we present the initialisation function that we use for the symbolic

struct cmm_vt in the example of Listing 6.2. In particular, we explicitly declare two symbolic fields from

the struct. First, the size of the struct (vt_size) is declared as symbolic using the __WASP_symb_int

primitive. Then, for the second field, which is a string, we allocate space for it in the heap and initialise it

with symbolic characters using the __WASP_symb_char primitive.

Our experimental procedures analyse the benchmark suite without constraining the number of paths

explored during concolic execution and with a timeout of 15 minutes. We choose these settings to enable
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WASP to freely analyse every path of the execution tree of a program; this is important because we are

interested in arguing about WASP-C’s ability to scale to real-world code applications. Consequently,

we expect that for the analysis that do not timeout at 15 minutes, the generated test suite produces

high-coverage tests. Furthermore, we expect that the analysis also scales gradually with the gradual

increase of complexity in the benchmark.

The experimental test bed used to run the AWS Encryption SDK benchmark suite was the same test

bed used for the evaluation of RQ1 and RQ2 (6.1.2 and 6.2.2). For each instantiation of WASP, we use

the flag -u, which disables WASP’s type checker.

6.3.3 Results

Table 6.7 presents the results of our experiments. For each category in the benchmark suite we present:

the number of tests in that category (ni), the total number of paths explored (n-paths), the total time

spent in the concolic loop (Tloop), the total time spent in Z3 (Tsolver), and the total analysis time for that

category (Tglobal). We organised the tests into categories by the data structure they are modifying/testing

or specific operations like encryption/decryption. Tests for generic data structures like lists or hash tables

or generic operations like getters/setters go into the Misc-ops category as they are not specific to the

AWS Encryption SDK. In total, WASP-C analyses the benchmark suite in three hours. Not surprisingly,

in the table, we observe that for data structures Md and Materials that contain concrete values are very

quickly analysed, while data structures that mainly contain symbolic values like Edk, Enc ctx, Cmm, Sig,

Keyring, Private, and Hdr take much more time to analyse. Also, note that analyses finish quickly in

the Encrypt/Decrypt categories that test encryption/decryption operations. We believe this is due to the

small inputs that the encryption/decryption operations receive. For instance, these operations receive

strings with one or two characters at most.

The results demonstrate that WASP-C can be applied to real-world code. In particular, we see that

the overall running time of WASP grows linearly with the number of explored paths. Specifically, with

the measurements from Table 6.7, we observe that: (i) Tloop grows linearly with n-paths, and (ii) Tsolver

grows linearly with n-paths. Concretely, for categories Encrypt and Edk, the number of paths explored

increases by roughly one order of magnitude (from 76 to 410); as a result, the Tloop and Tsolver also

roughly increase one order of magnitude (from 11.62s to 507.15s and 4.95s to 10.61s, respectively). Then,

the same phenomenon happens between Edk and Hdr, when the number of paths explored increases

one order of magnitude over Edks’s.

We believe that observation (i) is accurate because non-trivial paths through the code are of com-

parable depths since all loops are bound to a concrete number of iterations. To justify observation (ii),

we must first recall from Algorithm 4.1 that we perform conjunction of the negation of the generated

path condition with the global path condition set. Then, assuming that observation (i) holds, paths of
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Category ni n-paths Tloop (s) Tsolver (s) Tglobal (s)

Md 3 5 0.17 0.06 1.93
Materials 4 8 2.08 0.13 4.02
Encrypt 4 76 9.78 3.94 11.69
Decrypt 4 76 11.62 4.95 13.63

Edk 7 410 507.15 10.61 510.96
Enc ctx 7 559 903.83 99.03 907.85
Cmm 7 832 903.03 56.08 907.16
Sig 9 1,143 250.42 49.61 255.05

Keyring 17 1,274 1,176.94 144.03 1,186.03
Private 5 1,459 2,689.9 533.4 2,692.87

Hdr 16 2,940 5,405.03 308.74 5,415.04
Misc-ops 11 3,211 1,938.59 132.57 1,944.66

Total 94 11,993 13,798.64 1,343.15 13,850.89

Table 6.7: Benchmark results applying WASP-C to the AWS Encryption SDK for C.

comparable depth will extend the global path condition set with formulas of approximately constant size,

which results in linear growth of the global path condition set. Although it is not trivial that linear growth

of the global path condition leads to linear growth in constraint solving time, we observe this.

Summary

In this chapter, we evaluated WASP-C. We first examined the effectiveness of WASP-C for finding vul-

nerabilities in data structure libraries. We used the benchmark suite designed to benchmark Gillian-C.

After executing both the set of bug-free and the set of bug benchmarks, we found WASP-C to be highly

effective in finding bugs. WASP-C not only was able to identify the same bugs as Gillian-C, but it addi-

tionally found another vulnerability not reported by Gillian-C, and that can result in unspecified behaviour.

Furthermore, WASP-C was slightly more efficient than Gillian-C during analysis.

Then, we examined the different types of symbolic reasoning supported by WASP-C. We used the

Test-Comp benchmark suite, which includes symbolic reasoning types, such as the treatment of arrays,

reasoning about bit-operations, floating-point arithmetic, analysis of loops, and recursion. After executing

the benchmark suite for the specification coverage-branches and coverage-error-call, we found that

WASP-C ranked sixth and third, respectively. In total, WASP-C ranked fourth in terms of scoring and

finished analyses faster than the top-3 ranked tools.

Lastly, we examined WASP-C’s capability of scaling to industry-grade code. We used AWS Encryp-

tion SDK for C, which is a client-side encryption library. After executing the benchmark suite, we found

with some level of confidence that the analysis scales linearly. In total, WASP-C took approximately

three hours to complete the analysis. However, we expected this because the benchmark suite has
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many non-deterministic values in the data structures. Regardless, our results confirm that WASP-C

scales relatively well to industry-grade code.

76



7
Conclusion

Contents

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

77



78



7.1 Conclusions

WebAssembly (Wasm) is a new binary instruction format imposing its presence in modern Web appli-

cations by providing a means to run complex code in the browser efficiently. To the best of our knowl-

edge, there are only two tools for symbolically executing Wasm code: WANA [12] and Manticore [13].

However, these tools were only evaluated on smart contracts, which are fundamentally different from

general-purpose software applications, which are often much larger and impose different scale require-

ments.

We propose WASP, a novel concolic execution engine for testing Wasm modules, and WASP-C, a

symbolic execution framework to symbolically test C programs using WASP. A significant advantage

of using the concolic discipline [10, 14] when compared to static symbolic execution is that the latter

requires less frequent interactions with the underlying solver; essentially, one call to the solver per

explored execution path.

According to the evaluation we conclude that:

• WASP-C can detect bugs in complex data structure libraries: WASP tested a widely-used generic

data structure library for C and detected three bugs in the benchmarks, including a previously

unknown bug.

• WASP-C supports different types of symbolic reasoning: WASP was tested against the Test-

Comp [16] benchmark suite and obtained results comparable to well-established symbolic exe-

cution and testing tools for C, such as KLEE [9] and VeriFuzz [17]. Concretely, WASP was the

third-best tool in the cover-error category, the sixth-best tool in the cover-branches category, and

the overall fourth-best tool.

• WASP-C can scale well to industry-grade code: WASP was able to generate a high-coverage test

suite for the Amazon Encryption SDK for C1.

7.2 Future Work

In the future, we plan to extend WASP with support for static symbolic execution and perform an empirical

study comparing the fully static approach against the concolic one. We further plan to integrate both

strategies in a future version of WASP, which would leverage machine learning algorithms to select the

strategy to apply depending on the specific features of the program to be analysed.

Furthermore, we would like to continue evaluating the Amazon Encryption SDK for C. In particular,

we plan to analyse the modules aws_cryptosdk_session and aws_cryptosdk_framestate, which were

1https://github.com/aws/aws-encryption-sdk-c
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not considered in the evaluation of WASP due to the time constraints of this project.

Finally, we would like to leverage WASP to build symbolic execution engines for other high-level

programming languages, such as Java and Rust, which can already be compiled to Wasm using the

JWebAssembly [61] and rustc [62] compilers.
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